Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a78, author = {A. A. Makhnev and I. N. Belousov}, title = {To the theory of {Shilla} graphs with $b_2=c_2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1135--1146}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a78/} }
A. A. Makhnev; I. N. Belousov. To the theory of Shilla graphs with $b_2=c_2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1135-1146. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a78/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[3] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr, 65:1–2 (2012), 29–47 | DOI | MR | Zbl
[4] J. Vidali, Kode v razdaljno regularnih grafih, Doctorska Dissertacija, Univerza v Ljubljani, Ljubljana, 2013