To the theory of Shilla graphs with $b_2=c_2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1135-1146.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper by using exact formulas for multiplicities of eigenvalues it is founded new infinite serie intersection arrays of $Q$-polynomial Shilla graph with $b_2 = c_2$. Intersection array of $Q$-polynomial Shilla graph $\Gamma$ with $b_2=c_2$ is $\{2rt(2r+1),(2r-1)(2rt+t+1),r(r+t);1,r(r+t),t(4r^2-1)\}$ and for any vertex $u\in \Gamma$ the subgraph $\Gamma_3(u)$ is an antipodal distance-regular graph with the intersection array $\{t(2r+1),(2r-1)(t+1),1;1,t+1,t(2r+1)\}$. In case $t=2r^2-1$ the intersection array is feasible and in case $t=r(2lr-(l+1))$ the intersection array is feasible only if $(l,r)\in \{(1,2),(2,1),(4,1),(6,1)\}$.
Keywords: distance-regular graph, Shilla graph.
@article{SEMR_2017_14_a78,
     author = {A. A. Makhnev and I. N. Belousov},
     title = {To the theory of {Shilla} graphs with $b_2=c_2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1135--1146},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a78/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - I. N. Belousov
TI  - To the theory of Shilla graphs with $b_2=c_2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1135
EP  - 1146
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a78/
LA  - ru
ID  - SEMR_2017_14_a78
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A I. N. Belousov
%T To the theory of Shilla graphs with $b_2=c_2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1135-1146
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a78/
%G ru
%F SEMR_2017_14_a78
A. A. Makhnev; I. N. Belousov. To the theory of Shilla graphs with $b_2=c_2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1135-1146. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a78/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[2] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl

[3] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr, 65:1–2 (2012), 29–47 | DOI | MR | Zbl

[4] J. Vidali, Kode v razdaljno regularnih grafih, Doctorska Dissertacija, Univerza v Ljubljani, Ljubljana, 2013