Asymptotics of growth for non-monotone complexity of multi-valued logic function systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1100-1107

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the complexity of multi-valued logic functions realization by circuits in a special basis is investigated. This kind of basis consists of elements of two types. The first type of elements are monotone functions with zero weight. The second type of elements are non-monotone elements with unit weight. The non-empty set of elements of this type is finite. In the paper the minimum number of non-monotone elements for an arbitrary multi-valued logic function system $F$ is established. It equals $\lceil\log_{u}(d(F)+1)\rceil - O(1)$. Here $d(F)$ is the maximum number of the value decrease over all increasing chains of tuples of variable values for at least one function from system $F$; $u$ is the maximum (over all non-monotone basis functions and all increasing chains of tuples of variable values) length of subsequence such that the values of the function decrease over these subsequences.
Keywords: combinational machine (logic circuits), circuits complexity, bases with zero weight elements, $k$-valued logic functions, inversion complexity, Markov's theorem, Shannon function.
@article{SEMR_2017_14_a77,
     author = {V. V. Kochergin and A. V. Mikhailovich},
     title = {Asymptotics of growth for non-monotone complexity of multi-valued logic function systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1100--1107},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a77/}
}
TY  - JOUR
AU  - V. V. Kochergin
AU  - A. V. Mikhailovich
TI  - Asymptotics of growth for non-monotone complexity of multi-valued logic function systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1100
EP  - 1107
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a77/
LA  - en
ID  - SEMR_2017_14_a77
ER  - 
%0 Journal Article
%A V. V. Kochergin
%A A. V. Mikhailovich
%T Asymptotics of growth for non-monotone complexity of multi-valued logic function systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1100-1107
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a77/
%G en
%F SEMR_2017_14_a77
V. V. Kochergin; A. V. Mikhailovich. Asymptotics of growth for non-monotone complexity of multi-valued logic function systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1100-1107. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a77/