Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a77, author = {V. V. Kochergin and A. V. Mikhailovich}, title = {Asymptotics of growth for non-monotone complexity of multi-valued logic function systems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1100--1107}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a77/} }
TY - JOUR AU - V. V. Kochergin AU - A. V. Mikhailovich TI - Asymptotics of growth for non-monotone complexity of multi-valued logic function systems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1100 EP - 1107 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a77/ LA - en ID - SEMR_2017_14_a77 ER -
%0 Journal Article %A V. V. Kochergin %A A. V. Mikhailovich %T Asymptotics of growth for non-monotone complexity of multi-valued logic function systems %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1100-1107 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a77/ %G en %F SEMR_2017_14_a77
V. V. Kochergin; A. V. Mikhailovich. Asymptotics of growth for non-monotone complexity of multi-valued logic function systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1100-1107. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a77/
[1] J. of ACM, 5:4 (1958), 331–334 | DOI | MR | Zbl | Zbl
[2] Soviet Math. Doklady, 4 (1963), 694–696 | MR | Zbl
[3] V. V. Kochergin, A. V. Mikhailovich, Inversion complexity of functions of multi-valued logic, Cornell University Library, 2015, arXiv: 1510.05942
[4] Discrete Math. Appl., 27:5 (2017), 295–302 | DOI | DOI | MR
[5] O. B. Lupanov, Asymptotic Estimations of Complexity of Control Systems, Mosc. State Univ. Press, M., 1984 (in Russian)
[6] J. E. Savage, The complexity of computing, Wiley, New York, 1976 | MR | Zbl
[7] E. N. Gilbert, “Lattice theoretic properties of frontal switching functions”, J. Math. Phys., 33 (1954), 56–67 | DOI | MR
[8] E. I. Nechiporuk, “On the complexity of circuits in some bases containing nontrivial elements with zero weights”, Problemy Kibernetiki, 8 (1962), 123–160 (in Russian) | MR | Zbl
[9] M. J. Fischer, “The complexity of negation-limited networks — a brief survey”, Springer Lect. Notes in Comput. Sci., 33, 1975, 71–82 | DOI | MR | Zbl
[10] M. J. Fischer, Lectures on network complexity, Technical Report 1104, CS Department, Yale University, 1974; 1996
[11] K. Tanaka, T. Nishino, “On the complexity of negation-limited Boolean networks”, Proceedings of the 26th annual ACM symposium on theory of computing, STOC '94, 1994, 38–47 | Zbl
[12] K. Tanaka, T. Nishino, R. Beals, “Negation-limited circuit complexity of symmetric functions”, Inf. Proc. Lett., 59:5 (1996), 273–279 | DOI | MR | Zbl
[13] S. Sung, K. Tanaka, “Limiting negations in bounded-depth circuits: an extension of Markov's theorem”, Lect. Notes in Comput. Sci., 2906, 2003, 108–116 | DOI | MR | Zbl
[14] H. Morizumi, A note on the inversion complexity of Boolean functions in Boolean formulas, Cornell University Library, 2008, arXiv: 0811.0699
[15] Jukna S., Boolean Function Complexity. Advances and Frontiers, Springer, Berlin–Heidelberg, 2012 | MR | Zbl
[16] E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, L.-Y. Tan, Electronic Colloquium on Computational Complexity, 2014, Report No 144
[17] S. Guo, T. Malkin, I. C. Oliveira, A. Rosen, “The power of negations in cryptography”, Lect. Notes in Comput. Sci., 9014, 2015, 36–65 | DOI | MR | Zbl
[18] V. V. Kochergin, A. V. Mikhailovich, Some extensions of inversion complexity of Boolean functions, Cornell University Library, 2015, arXiv: 1506.04485
[19] V. V. Kochergin, A. V. Mikhailovich, “On the complexity of circuits in bases containing monotone elements with zero weights”, Prikladnaya Diskretnaya Matematika, 30:4 (2015), 25–32 (in Russian) | DOI