Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a75, author = {S. A. Malyugin}, title = {Perfect binary codes of infinite length with complete system of triples}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {877--888}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a75/} }
S. A. Malyugin. Perfect binary codes of infinite length with complete system of triples. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 877-888. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a75/
[1] Avgustinovich S. V., Solov'eva F. I., “On the nonsystematic perfect binary codes”, Problems Inform. Transmission, 32:3 (1996), 258–261 | MR | Zbl
[2] Vasil'ev Yu. L., “On Nongroup Close-Packed Codes”, Problems of Cybernetics, 8 (1962), 337–339 | MR | Zbl
[3] Malyugin S. A., “On enumeration of the perfect binary codes of length 15”, Discrete Applied Mathematics, 135:1–3 (2004), 161–181 | DOI | MR
[4] Malyugin S. A., “Perfect binary codes of infinite length”, J. Appl. Indust. Math., 8:4 (2017), 552–556 | DOI | MR
[5] Potapov V. N., “Infinite-Dimensional Quasigroups of finite orders”, Math. Notes, 93:3 (2013), 479–486 | DOI | MR | Zbl
[6] Romanov A. M., “On the construction of perfect nonlinear binary codes by symbol inversion”, Discretn. Anal. Issled. Oper. Ser. 1, 4:1 (1997), 46–52 (in Russian) | MR | Zbl
[7] Phelps K. T., LeVan M. J., “Kernels of nonlinear Hamming codes”, Designs, Codes and Cryptogr., 6:3 (1995), 247–257 | DOI | MR | Zbl
[8] Phelps K. T., LeVan M. J., “Nonsystematic perfect codes”, SIAM J. Discrete Math., 12:1 (1999), 27–34 | DOI | MR | Zbl