Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a73, author = {A. N. Maksimenko}, title = {Boolean quadric polytopes are faces of linear ordering polytopes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {640--646}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a73/} }
A. N. Maksimenko. Boolean quadric polytopes are faces of linear ordering polytopes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 640-646. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a73/
[1] M.M. Deza, M. Laurent, Geometry of cuts and metrics, Springer, 1997 | MR | Zbl
[2] S. Fiorini, “How to recycle your facets”, Discrete Optimization, 3 (2006), 136–153 | DOI | MR | Zbl
[3] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, R. de Wolf, “Exponential Lower Bounds for Polytopes in Combinatorial Optimization”, J. ACM, 62:2 (2015), 17 | DOI | MR | Zbl
[4] V. Kaibel, S. Weltge, “A Short Proof that the Extension Complexity of the Correlation Polytope Grows Exponentially”, Discrete and Computational Geometry, 53 (2015), 397–401 | DOI | MR | Zbl
[5] R.M. Karp, “Reducibility among combinatorial problems”, Complexity of computer computations, 1972, 85–103 | DOI | MR
[6] M.M. Kovalev, G.G. Bolotashvili, “Extension of a special class of facets for the polytope of the linear ordering problem”, Doklady of the National academy of sciences of Belarus, 56:5 (2012), 20–24 | MR | Zbl
[7] A.N. Maksimenko, “An analog of the Cook theorem for polytopes”, Russian Mathematics, 56 (2012), 28–34 | DOI | MR | Zbl
[8] A. Maksimenko, “$k$-Neighborly faces of the Boolean quadric polytopes”, Journal of Mathematical Sciences, 203 (2014), 816–822 | DOI | MR | Zbl
[9] A. Maksimenko, “The common face of some 0/1-polytopes with NP-complete nonadjacency relation”, Journal of Mathematical Sciences, 203 (2014), 823–832 | DOI | MR | Zbl
[10] A.N. Maksimenko, “A special role of Boolean quadratic polytopes among other combinatorial polytopes”, Model. Anal. Inform. Sist., 23 (2016), 23–40 | DOI | MR
[11] H.P. Young, “On permutations and permutation polytopes”, Polyhedral combinatorics, 8 (1978), 128–140 | DOI | MR | Zbl