Claw-free strictly Deza graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 367-387
Voir la notice de l'article provenant de la source Math-Net.Ru
A Deza graph with parameters $(v,k,b,a)$ is a $k$-regular graph, which has exactly $v$ vertices and any two distinct vertices have either $a$ or $b$ common neighbors. A strictly Deza graph is a Deza graph of diameter $2$ that is not strongly regular. A claw-free graph is a graph in which no induced subgraph is a complete bipartite graph $K_{1,3}$. We proved if graph $G$ is a claw-free strictly Deza graph which contains a $3$-coclique then $G$ is either an $4 \times n$-lattice, where $n > 2$, $n \neq 4$, or the $2$-extension of the $3 \times 3$-lattice, or two strictly Deza graphs with the parameters $(9,4,2,1)$, or two strictly Deza graphs with the parameters $(12,6,3,2)$, or a Deza line graph with the parameters $(20,6,2,1)$.
Keywords:
strictly Deza graphs, claw-free graphs.
@article{SEMR_2017_14_a72,
author = {V. V. Kabanov and A. V. Mityanina},
title = {Claw-free strictly {Deza} graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {367--387},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a72/}
}
V. V. Kabanov; A. V. Mityanina. Claw-free strictly Deza graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 367-387. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a72/