Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a72, author = {V. V. Kabanov and A. V. Mityanina}, title = {Claw-free strictly {Deza} graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {367--387}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a72/} }
V. V. Kabanov; A. V. Mityanina. Claw-free strictly Deza graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 367-387. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a72/
[1] L. W. Beineke, “Characterizations of derived graphs”, Journal of Combinatorial Theory, 9:2 (1970), 129–135 | DOI | MR | Zbl
[2] D. P. Sumner, “Graphs with $1$-factors”, Proceedings of the American Mathematical Society, 42:1 (1974), 8–12 | MR | Zbl
[3] M. Las Vergnas, “A note on matchings in graphs”, Cahiers du Centre d'Études de Recherche Opérationnelle, 17:2–3–4 (1975), 257–260 | MR | Zbl
[4] N. Sbihi, “Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile”, Discrete Mathematics, 29:1 (1980), 53–76 | DOI | MR | Zbl
[5] G. J. Minty, “On maximal independent sets of vertices in claw-free graphs”, Journal of Combinatorial Theory, Series B, 28:3 (1980), 284–304 | DOI | MR | Zbl
[6] F. Maffray, B. A. Reed, “A description of claw-free perfect graphs”, Journal Combinatorial Theory, Series B, 75:1 (1999), 134–156 | DOI | MR | Zbl
[7] M. Erickson, S. Fernando, W. H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: a generalization of strongly regular graphs”, Journal of Combinatorial Designs, 7:6 (1999), 395–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] R. Faudree, E. Flandrin, Z. Ryjáček, “Claw-flee graphs—a survey”, Discrete Mathematics, 164:1–3 (1997), 87–147 | DOI | MR | Zbl
[9] M. Chudnovsky, P. Seymour, “Claw-free graphs. V. Global structure”, Journal of Combinatorial Theory, Series B, 98:6 (2008), 1373–1410 | DOI | MR | Zbl
[10] A. E. Brouwer, M. Numata, “A characterization of some graphs which do not contain $3$-claws”, Discrete Mathematics, 124:1–3 (1994), 49–54 | DOI | MR | Zbl
[11] A. V. Mityanina, “On $K_{1,3}$-free strictly Deza graphs”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 22, no. 1, 2016, 231–234 (Russian) | DOI | MR
[12] SibirskiĭMatematicheskiĭZhurnal, 39:55 (1998), 1054–1059 | DOI | MR | Zbl
[13] Trudy Instituta Matematiki i Mekhaniki UrO RAN, 18, no. 1, 2012, 165–177 | DOI | MR | Zbl
[14] Matematicheskie Zametki, 60:4 (1996), 495–503 | DOI | DOI | MR | Zbl
[15] S. V. Goryainov, L. V. Shalaginov, “On Deza graphs on $14$, $15$ and $16$ vertices”, Siberian Electronic Mathematical Reports, 8 (2011), 105–115 (Russian, English summary) | MR | Zbl
[16] Matematicheskie Zametki, 63:3 (1998), 407–413 | DOI | DOI | MR | Zbl
[17] A. C. M. Van Rooij, H. S. Wilf, “The interchange graph of a finite graph”, Acta Mathematica Academiae Scientiarum Hungaricae, 16:3 (1965), 263–269 | MR | Zbl