Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a70, author = {S. V. Avgustinovich and E. V. Gorkunov}, title = {On automorphisms of linear codes over a prime field}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {210--217}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a70/} }
TY - JOUR AU - S. V. Avgustinovich AU - E. V. Gorkunov TI - On automorphisms of linear codes over a prime field JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 210 EP - 217 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a70/ LA - ru ID - SEMR_2017_14_a70 ER -
S. V. Avgustinovich; E. V. Gorkunov. On automorphisms of linear codes over a prime field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 210-217. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a70/
[1] A. A. Markov, “On transformations without error propagation”, Selected Works, v. II, Theory of Algorithms and Constructive Mathematics. Mathematical Logic. Informatics and Related Topics, MTsNMO, M., 2003, 70–93 (Russian)
[2] F. J. MacWilliams, Combinatorial Problems of Elementary Abelian Groups, Doctoral thesis, Harvard University, Cambridge, 1962 | MR
[3] E. V. Gorkunov, “The automorphism group of a $q$-ary Hamming code”, Diskretn. Analiz Issled. Oper., 17:6 (2010), 50–55 (Russian) | MR | Zbl
[4] E. V. Gorkunov, E. V. Sotnikova, “On linear rigidity of $[n,n-1,2]$-codes in a space over a prime field”, Sib. Elektron. Mat. Izv., 11 (2014), 771–776 (Russian) | Zbl
[5] Ya. M. Kurlyandchik, “On logarithmic asymptotic behavior of length of a maximal cycle with spread $r>2$”, Discrete Analysis, 19, Inst. Mat. SO AN SSSR, Novosibirsk, 1971, 48–55 (Russian) | MR
[6] W. C. Huffman, “Codes and Groups”, Handbook of Coding Theory, Ch. 17, Elsevier Science, Amsterdam, 1998 | MR