On automorphisms of linear codes over a prime field
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 210-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss linearity of code automorphisms for codes in a space over a finite field. We introduce a concept of minimal supports and minimal codewords, which in some cases are turned out useful to prove that an automorphism of a linear code is linear. Also we construct a graph on the set of minimal supports of a code as a vertex set. In this paper for a linear code in a space over a prime field it is shown that all its autotopies fixing the zero vector are linear if and only if the graph of minimal supports of the code does not contain any isolated vertices. We also characterize the autotopy group of a linear code over a prime field.
Keywords: linear code, linear automorphism, linearly rigid code, graph of minimal supports, finite field, prime field.
Mots-clés : code automorphism, minimal codeword
@article{SEMR_2017_14_a70,
     author = {S. V. Avgustinovich and E. V. Gorkunov},
     title = {On automorphisms of linear codes over a prime field},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {210--217},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a70/}
}
TY  - JOUR
AU  - S. V. Avgustinovich
AU  - E. V. Gorkunov
TI  - On automorphisms of linear codes over a prime field
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 210
EP  - 217
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a70/
LA  - ru
ID  - SEMR_2017_14_a70
ER  - 
%0 Journal Article
%A S. V. Avgustinovich
%A E. V. Gorkunov
%T On automorphisms of linear codes over a prime field
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 210-217
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a70/
%G ru
%F SEMR_2017_14_a70
S. V. Avgustinovich; E. V. Gorkunov. On automorphisms of linear codes over a prime field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 210-217. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a70/

[1] A. A. Markov, “On transformations without error propagation”, Selected Works, v. II, Theory of Algorithms and Constructive Mathematics. Mathematical Logic. Informatics and Related Topics, MTsNMO, M., 2003, 70–93 (Russian)

[2] F. J. MacWilliams, Combinatorial Problems of Elementary Abelian Groups, Doctoral thesis, Harvard University, Cambridge, 1962 | MR

[3] E. V. Gorkunov, “The automorphism group of a $q$-ary Hamming code”, Diskretn. Analiz Issled. Oper., 17:6 (2010), 50–55 (Russian) | MR | Zbl

[4] E. V. Gorkunov, E. V. Sotnikova, “On linear rigidity of $[n,n-1,2]$-codes in a space over a prime field”, Sib. Elektron. Mat. Izv., 11 (2014), 771–776 (Russian) | Zbl

[5] Ya. M. Kurlyandchik, “On logarithmic asymptotic behavior of length of a maximal cycle with spread $r>2$”, Discrete Analysis, 19, Inst. Mat. SO AN SSSR, Novosibirsk, 1971, 48–55 (Russian) | MR

[6] W. C. Huffman, “Codes and Groups”, Handbook of Coding Theory, Ch. 17, Elsevier Science, Amsterdam, 1998 | MR