In equivalence of same knots in the thickened Klein bottle
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1472-1479.

Voir la notice de l'article provenant de la source Math-Net.Ru

The history of knot tabulation is long established, having begun over 130 years ago. In 2016 S. Matveev and the author generated a complete list of 33 knots in the thickened Klein bottle whose minimal diagrams have at most 3 crossings. By using the generalized Kauffman bracket polynomial in four variables it was established that the list contains at least 28 different knots. In the paper identifying all duplicates we prove that the list contains exactly 28 knots.
Keywords: knot (links) in the thickened Klein bottle, knot diagram, transformations diagrams.
@article{SEMR_2017_14_a69,
     author = {L. R. Nabeeva},
     title = {In equivalence of same knots in the thickened {Klein} bottle},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1472--1479},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a69/}
}
TY  - JOUR
AU  - L. R. Nabeeva
TI  - In equivalence of same knots in the thickened Klein bottle
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1472
EP  - 1479
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a69/
LA  - ru
ID  - SEMR_2017_14_a69
ER  - 
%0 Journal Article
%A L. R. Nabeeva
%T In equivalence of same knots in the thickened Klein bottle
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1472-1479
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a69/
%G ru
%F SEMR_2017_14_a69
L. R. Nabeeva. In equivalence of same knots in the thickened Klein bottle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1472-1479. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a69/

[1] S.V. Matveev, L.R. Nabeeva, “Tabulating knots in the thickened Klein Bottle”, Siberian Mathematical Journal, 57:3 (2016), 542–548 | DOI | MR | Zbl

[2] J. Drobotukhina, “Classification of Links in $RP^3$ with at Most Six Crossings”, Advances in mathematics, 18 (1994), 87–121 | MR | Zbl

[3] A. Cattabriga, E. Manfredi, M. Mulazzani, “On knots and links in lens spaces”, Topology and its Applications, 160:2 (2013), 430–442 | DOI | MR | Zbl

[4] B. Gabrovsek, M. Mroczkowski, “Knots in the solid torus up to 6 crossings”, Journal of Knot Theory and Its Ramifications, 21:11 (2012), 1250106–1250148 | DOI | MR

[5] A.A. Akimova, S.V. Matveev, “Classification of genus 1 virtual knots having at most five classification crossings”, Journal of Knot Theory and Its Ramifications, 23:6 (2014), 1450031–1450050 | DOI | MR

[6] S.V. Matveev, A.T. Fomenko, Algorithmic and computer methods in three-dimensional topology, MGU, M., 1991 | MR