Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a69, author = {L. R. Nabeeva}, title = {In equivalence of same knots in the thickened {Klein} bottle}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1472--1479}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a69/} }
L. R. Nabeeva. In equivalence of same knots in the thickened Klein bottle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1472-1479. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a69/
[1] S.V. Matveev, L.R. Nabeeva, “Tabulating knots in the thickened Klein Bottle”, Siberian Mathematical Journal, 57:3 (2016), 542–548 | DOI | MR | Zbl
[2] J. Drobotukhina, “Classification of Links in $RP^3$ with at Most Six Crossings”, Advances in mathematics, 18 (1994), 87–121 | MR | Zbl
[3] A. Cattabriga, E. Manfredi, M. Mulazzani, “On knots and links in lens spaces”, Topology and its Applications, 160:2 (2013), 430–442 | DOI | MR | Zbl
[4] B. Gabrovsek, M. Mroczkowski, “Knots in the solid torus up to 6 crossings”, Journal of Knot Theory and Its Ramifications, 21:11 (2012), 1250106–1250148 | DOI | MR
[5] A.A. Akimova, S.V. Matveev, “Classification of genus 1 virtual knots having at most five classification crossings”, Journal of Knot Theory and Its Ramifications, 23:6 (2014), 1450031–1450050 | DOI | MR
[6] S.V. Matveev, A.T. Fomenko, Algorithmic and computer methods in three-dimensional topology, MGU, M., 1991 | MR