Group structures of a function spaces with the set-open topology
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1440-1446
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we find at the properties
of the family $\lambda$ which imply that the space
$C(X,\mathbb{R}^{\alpha})$ — the set of all continuous mappings
on a Tychonoff space $X$ to the space $\mathbb{R}^{\alpha}$ with
the $\lambda$-open topology is a semitopological group
(paratopological group, topological group, topological vector
space and other algebraic structures) under the usual operations
of addition and multiplication (and multiplication by scalars).
For example, if $X=[0,\omega_1)$ and $\lambda$ is a family of
$C$-compact subsets of $X$, then
$C_{\lambda}(X,\mathbb{R}^{\omega})$ is a semitopological group
(locally convex topological vector space, topological algebra),
but $C_{\lambda}(X,\mathbb{R}^{\omega_1})$ is not semitopological
group.
Keywords:
set-open topology, topological group, $C$-compact subset, semitopological group, paratopological group, topological vector space, $C_{\alpha}$-compact subset, topological algebra.
@article{SEMR_2017_14_a68,
author = {A. V. Osipov},
title = {Group structures of a function spaces with the set-open topology},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1440--1446},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/}
}
A. V. Osipov. Group structures of a function spaces with the set-open topology. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1440-1446. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/