Group structures of a function spaces with the set-open topology
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1440-1446

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find at the properties of the family $\lambda$ which imply that the space $C(X,\mathbb{R}^{\alpha})$ — the set of all continuous mappings on a Tychonoff space $X$ to the space $\mathbb{R}^{\alpha}$ with the $\lambda$-open topology is a semitopological group (paratopological group, topological group, topological vector space and other algebraic structures) under the usual operations of addition and multiplication (and multiplication by scalars). For example, if $X=[0,\omega_1)$ and $\lambda$ is a family of $C$-compact subsets of $X$, then $C_{\lambda}(X,\mathbb{R}^{\omega})$ is a semitopological group (locally convex topological vector space, topological algebra), but $C_{\lambda}(X,\mathbb{R}^{\omega_1})$ is not semitopological group.
Keywords: set-open topology, topological group, $C$-compact subset, semitopological group, paratopological group, topological vector space, $C_{\alpha}$-compact subset, topological algebra.
@article{SEMR_2017_14_a68,
     author = {A. V. Osipov},
     title = {Group structures of a function spaces with the set-open topology},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1440--1446},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - Group structures of a function spaces with the set-open topology
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1440
EP  - 1446
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/
LA  - en
ID  - SEMR_2017_14_a68
ER  - 
%0 Journal Article
%A A. V. Osipov
%T Group structures of a function spaces with the set-open topology
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1440-1446
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/
%G en
%F SEMR_2017_14_a68
A. V. Osipov. Group structures of a function spaces with the set-open topology. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1440-1446. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/