Group structures of a function spaces with the set-open topology
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1440-1446.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find at the properties of the family $\lambda$ which imply that the space $C(X,\mathbb{R}^{\alpha})$ — the set of all continuous mappings on a Tychonoff space $X$ to the space $\mathbb{R}^{\alpha}$ with the $\lambda$-open topology is a semitopological group (paratopological group, topological group, topological vector space and other algebraic structures) under the usual operations of addition and multiplication (and multiplication by scalars). For example, if $X=[0,\omega_1)$ and $\lambda$ is a family of $C$-compact subsets of $X$, then $C_{\lambda}(X,\mathbb{R}^{\omega})$ is a semitopological group (locally convex topological vector space, topological algebra), but $C_{\lambda}(X,\mathbb{R}^{\omega_1})$ is not semitopological group.
Keywords: set-open topology, topological group, $C$-compact subset, semitopological group, paratopological group, topological vector space, $C_{\alpha}$-compact subset, topological algebra.
@article{SEMR_2017_14_a68,
     author = {A. V. Osipov},
     title = {Group structures of a function spaces with the set-open topology},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1440--1446},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - Group structures of a function spaces with the set-open topology
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1440
EP  - 1446
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/
LA  - en
ID  - SEMR_2017_14_a68
ER  - 
%0 Journal Article
%A A. V. Osipov
%T Group structures of a function spaces with the set-open topology
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1440-1446
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/
%G en
%F SEMR_2017_14_a68
A. V. Osipov. Group structures of a function spaces with the set-open topology. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1440-1446. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a68/

[1] A.V. Arhangel'skii, M.G. Tkachenko, Topological Groups and Related Structures, Atlantis Press, Paris, 2008 | MR | Zbl

[2] A. Bouchair, S. Kelaiaia, “Comparison of some set open topologies on $C(X,Y)$”, Topology and its Applications, 178 (2014), 352–359 | DOI | MR | Zbl

[3] N. Bourbaki, Elements of Mathematics. General Topology (Chapters 1–4), Springer-Verlag, Berlin–New York, 1989 | MR | Zbl

[4] R. Engelking, General Topology, PWN, Warsaw, 1977 ; Mir, M., 1986 | MR | Zbl

[5] S. García-Ferreira, M. Sanchis, A. Tamariz-Mascarúa, “On $C_{\alpha}$-compact subsets”, Topology and its Applications, 77:2 (1997), 139–160 | DOI | MR | Zbl

[6] S. García-Ferreira, M. Sanchis, S. W. Watson, “Some remarks on the product of two $C_{\alpha}$-compact subsets”, Czechoslovak Mathematical Journal, 50:2 (2000), 249–264 | DOI | MR | Zbl

[7] L. Harkat, A. Bouchair, S. Kelaiaia, “Comparison of some set open and uniform topologies and some properties of the restriction map”, Hacettepe University Journal of Mathematics and Statistics, 2017 | DOI

[8] J.F. Kennison, “$m$-pseudocompactness”, Trans. Amer. Math. Soc., 104 (1962), 436–442 | MR | Zbl

[9] A.V. Osipov, “The Set-Open topology”, Topology Proceedings, 37 (2011), 205–217 | MR | Zbl

[10] A.V. Osipov, “Topological-algebraic properties of function spaces with set-open topologies”, Topology and its Applications, 159:3 (2012), 800–805 | DOI | MR | Zbl

[11] A.V. Osipov, “Uniformity of uniform convergence on the family of sets”, Topology Proceedings, 50 (2017), 79–86 | MR | Zbl