On the volume of double twist link cone-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1188-1197.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the double twist link $J(2m+1, 2n+1)$ which is the two-bridge link corresponding to the continued fraction $(2m+1)-1/(2n+1)$. It is known that $J(2m+1, 2n+1)$ has reducible nonabelian $SL_2(\mathbb C)$-character variety if and only if $m=n$. In this paper we give a formula for the volume of hyperbolic cone-manifolds of $J(2m+1,2m+1)$. We also give a formula for the A-polynomial $2$-tuple corresponding to the canonical component of the character variety of $J(2m+1,2m+1)$.
Keywords: canonical component, cone-manifold, hyperbolic volume, the A-polynomial, two-bridge link, double twist link.
@article{SEMR_2017_14_a65,
     author = {Anh T. Tran},
     title = {On the volume of double twist link cone-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1188--1197},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/}
}
TY  - JOUR
AU  - Anh T. Tran
TI  - On the volume of double twist link cone-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1188
EP  - 1197
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/
LA  - en
ID  - SEMR_2017_14_a65
ER  - 
%0 Journal Article
%A Anh T. Tran
%T On the volume of double twist link cone-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1188-1197
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/
%G en
%F SEMR_2017_14_a65
Anh T. Tran. On the volume of double twist link cone-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1188-1197. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/

[1] G. Burde, H. Zieschang, Knots, de Gruyter Stud. Math., 5, de Gruyter, Berlin, 2003 | MR | Zbl

[2] D. Cooper, M. Culler, H. Gillet, D. Long, P. Shalen, “Plane curves associated to character varieties of 3-manifolds”, Invent. Math., 118:1 (1994), 47–84 | DOI | MR | Zbl

[3] M. Culler, P. Shalen, “Varieties of group representations and splittings of 3-manifolds”, Ann. of Math. (2), 117:1 (1983), 109–146 | DOI | MR | Zbl

[4] D. Derevnin, A. Mednykh, M. Mulazzani, “Volumes for twist link cone-manifolds”, Bol. Soc. Mat. Mexicana (3), 10, Special Issue (2004), 129–145 | MR | Zbl

[5] H. Hilden, M. Lozano, J. Montesinos-Amilibia, “Volumes and Chern–Simons invariants of cyclic coverings over rational knots”, Topology and Teichmüller spaces (Katinkulta, 1995), World Sci. Publ., River Edge, NJ, 1996, 31–55 | DOI | MR | Zbl

[6] J. Ham, J. Lee, A. Mednykh, A. Rasskazov, “An explicit volume formula for the link $7_3^2(\alpha, \alpha)$ cone-manifolds”, Siberian Electronic Mathematical Reports, 13 (2016), 1017–1025 | MR | Zbl

[7] S. Kojima, “Deformations of hyperbolic 3-cone-manifolds”, J. Differential Geom., 49:3 (1998), 469–516 | DOI | MR | Zbl

[8] S. Kojima, “Hyperbolic 3-manifolds singular along knots”, Chaos Solitons Fractals, 9:4–5 (1998), 765–777 | DOI | MR | Zbl

[9] A. Lubotzky, A. Magid, Varieties of representations of finitely generated groups, Memoirs of the AMS, 58, no. 336, 1985 | DOI | MR

[10] M. Macasieb, K. Petersen, R. van Luijk, “On character varieties of two-bridge knot groups”, Proc. Lond. Math. Soc. (3), 103:3 (2011), 473–507 | DOI | MR | Zbl

[11] A. Mednykh, A. Vesnin, “On the volume of hyperbolic Whitehead link cone-manifolds”, Geometry and analysis, Sci. Ser. A Math. Sci. (N.S.), 8 (2002), 1–11 | MR | Zbl

[12] K. Petersen, A. Tran, “Character varieties of double twist links”, Algebr. Geom. Topol., 15:6 (2015), 3569–3598 | DOI | MR | Zbl

[13] J. Porti, “Spherical cone structures on 2-bridge knots and links”, Kobe J. Math., 21:1–2 (2004), 61–70 | MR | Zbl

[14] J. Porti, H. Weiss, “Deforming Euclidean cone 3-manifolds”, Geom. Topol., 11 (2007), 1507–1538 | DOI | MR | Zbl

[15] R. Riley, “Algebra for Heckoid groups”, Trans. Amer. Math. Soc., 334:1 (1992), 389–409 | DOI | MR | Zbl

[16] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton University, 1977/78 http://library.msri.org/books/gt3m

[17] A. Tran, The A-polynomial 2-tuple of twisted Whitehead links, 2016, arXiv: 1608.01381 | MR

[18] X. Zhang, “The A-polynomial $n$-tuple of a link and hyperbolic 3-manifolds with non-integral traces”, J. Knot Theory Ramifications, 15:3 (2006), 279–287 | DOI | MR | Zbl