On the volume of double twist link cone-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1188-1197

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the double twist link $J(2m+1, 2n+1)$ which is the two-bridge link corresponding to the continued fraction $(2m+1)-1/(2n+1)$. It is known that $J(2m+1, 2n+1)$ has reducible nonabelian $SL_2(\mathbb C)$-character variety if and only if $m=n$. In this paper we give a formula for the volume of hyperbolic cone-manifolds of $J(2m+1,2m+1)$. We also give a formula for the A-polynomial $2$-tuple corresponding to the canonical component of the character variety of $J(2m+1,2m+1)$.
Keywords: canonical component, cone-manifold, hyperbolic volume, the A-polynomial, two-bridge link, double twist link.
@article{SEMR_2017_14_a65,
     author = {Anh T. Tran},
     title = {On the volume of double twist link cone-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1188--1197},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/}
}
TY  - JOUR
AU  - Anh T. Tran
TI  - On the volume of double twist link cone-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1188
EP  - 1197
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/
LA  - en
ID  - SEMR_2017_14_a65
ER  - 
%0 Journal Article
%A Anh T. Tran
%T On the volume of double twist link cone-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1188-1197
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/
%G en
%F SEMR_2017_14_a65
Anh T. Tran. On the volume of double twist link cone-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1188-1197. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/