On the volume of double twist link cone-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1188-1197
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the double twist link $J(2m+1, 2n+1)$ which is the two-bridge link corresponding to the continued fraction $(2m+1)-1/(2n+1)$. It is known that $J(2m+1, 2n+1)$ has reducible nonabelian $SL_2(\mathbb C)$-character variety if and only if $m=n$. In this paper we give a formula for the volume of hyperbolic cone-manifolds of $J(2m+1,2m+1)$. We also give a formula for the A-polynomial $2$-tuple corresponding to the canonical component of the character variety of $J(2m+1,2m+1)$.
Keywords:
canonical component, cone-manifold, hyperbolic volume, the A-polynomial, two-bridge link, double twist link.
@article{SEMR_2017_14_a65,
author = {Anh T. Tran},
title = {On the volume of double twist link cone-manifolds},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1188--1197},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/}
}
Anh T. Tran. On the volume of double twist link cone-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1188-1197. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a65/