The analytic method of embedding symplectic geometry
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 657-672.

Voir la notice de l'article provenant de la source Math-Net.Ru

As you know, the $n$-dimensional geometry of maximum mobility allows the group of motions of dimension $n(n+1)/2$. Many of these geometries are well known such as euclidean and pseudoeuclidean geometries. These are phenomenologically symmetric geometries, i.e. for them the metric properties are equivalent to group ones. In this work we applied the analytical method of embedding, which helps to find metric functions of all three-dimensional geometries of maximum mobility, which contain as an argument metric functions of two-dimensional symplectic geometry.
Keywords: symplectic geometry, functional equation, differential equation, metric function.
@article{SEMR_2017_14_a61,
     author = {V. A. Kyrov and G. G. Mikhailichenko},
     title = {The analytic method of embedding symplectic geometry},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {657--672},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a61/}
}
TY  - JOUR
AU  - V. A. Kyrov
AU  - G. G. Mikhailichenko
TI  - The analytic method of embedding symplectic geometry
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 657
EP  - 672
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a61/
LA  - ru
ID  - SEMR_2017_14_a61
ER  - 
%0 Journal Article
%A V. A. Kyrov
%A G. G. Mikhailichenko
%T The analytic method of embedding symplectic geometry
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 657-672
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a61/
%G ru
%F SEMR_2017_14_a61
V. A. Kyrov; G. G. Mikhailichenko. The analytic method of embedding symplectic geometry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 657-672. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a61/

[1] G.G. Mikhailichenko, “On group and phenomenological symmetry in geometry”, Siberian Mathematical Journal, 25:5 (1984), 99–113 | MR | Zbl

[2] G.G. Mikhailichenko, Polymetric geometries, NGU, Novosib., 2001

[3] L.V. Ovsyannikov, A group analysis of differential equation, Nauka, M., 1978 | MR

[4] G.G. Mikhailichenko, “Two-dimensional geometry”, Soviet Math. Doklady, 24:2 (1981), 346–348 | MR | Zbl

[5] V.H. Lev, “Three-dimensional geometries in the theory of physical structures”, Vychisl. Sistemy, 125 (1988), 90–103 | MR | Zbl

[6] G.G. Mikhailichenko, The mathematical basics and results of the theory of physical structires, GAGU, Gorno-Altaisk, 2016

[7] V.A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Sib. Zn. Ind. Mat., 13:4 (2010), 38–51 (in Russian) | MR | Zbl

[8] V.A. Kyrov, “Functional equations in simplicial geometry”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 2, 2010, 149–153 (in Russian)

[9] V.A. Kyrov, “On some class jf functional-differential equation”, Vestn. Samar. Thech. Univ. Mat. Phys. Nauki, 26:1 (2010), 31–38 (in Russian) | DOI

[10] G.M. Fichtengolz, A course of differential and integral calculus, v. 2, Phismhatgis, M., 1963 | MR

[11] L.E. Elsgoltz, Differential equations and calculus of variations, Nauka, M., 1969 | MR

[12] V. Dyakonov, Maple 10/11/12/13/14 in mathematical calculations, DMS, M., 2014