@article{SEMR_2017_14_a61,
author = {V. A. Kyrov and G. G. Mikhailichenko},
title = {The analytic method of embedding symplectic geometry},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {657--672},
year = {2017},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a61/}
}
V. A. Kyrov; G. G. Mikhailichenko. The analytic method of embedding symplectic geometry. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 657-672. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a61/
[1] G.G. Mikhailichenko, “On group and phenomenological symmetry in geometry”, Siberian Mathematical Journal, 25:5 (1984), 99–113 | MR | Zbl
[2] G.G. Mikhailichenko, Polymetric geometries, NGU, Novosib., 2001
[3] L.V. Ovsyannikov, A group analysis of differential equation, Nauka, M., 1978 | MR
[4] G.G. Mikhailichenko, “Two-dimensional geometry”, Soviet Math. Doklady, 24:2 (1981), 346–348 | MR | Zbl
[5] V.H. Lev, “Three-dimensional geometries in the theory of physical structures”, Vychisl. Sistemy, 125 (1988), 90–103 | MR | Zbl
[6] G.G. Mikhailichenko, The mathematical basics and results of the theory of physical structires, GAGU, Gorno-Altaisk, 2016
[7] V.A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Sib. Zn. Ind. Mat., 13:4 (2010), 38–51 (in Russian) | MR | Zbl
[8] V.A. Kyrov, “Functional equations in simplicial geometry”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 2, 2010, 149–153 (in Russian)
[9] V.A. Kyrov, “On some class jf functional-differential equation”, Vestn. Samar. Thech. Univ. Mat. Phys. Nauki, 26:1 (2010), 31–38 (in Russian) | DOI
[10] G.M. Fichtengolz, A course of differential and integral calculus, v. 2, Phismhatgis, M., 1963 | MR
[11] L.E. Elsgoltz, Differential equations and calculus of variations, Nauka, M., 1969 | MR
[12] V. Dyakonov, Maple 10/11/12/13/14 in mathematical calculations, DMS, M., 2014