Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a6, author = {M. S. Nirova}, title = {Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {178--189}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a6/} }
TY - JOUR AU - M. S. Nirova TI - Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 178 EP - 189 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a6/ LA - ru ID - SEMR_2017_14_a6 ER -
M. S. Nirova. Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 178-189. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a6/
[1] A. A. Makhnev, D. V. Paduchikh, “On strongly regular graphs with eigenvalue $\mu$ and their extensions”, Proceedings of the Steklov Institute of Mathematics, 285 (2014), 128–135 | DOI | MR
[2] P. J. Cameron, Graphs, Permutation Groups, Cambridge Univ. Press, Cambridge, 1999 | MR
[3] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[4] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl
[5] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81 (2010), 439–442 | DOI | MR | Zbl
[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl