Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 178-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

Distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$ is $AT4(4,6,5)$-graph. Antipodal quotient $\bar \Gamma$ is strongly regular with parameters $(800,204,28,60)$ and nonprincipal eigenvalues $4,-36$. Constituents of $\bar \Gamma$ are strongly regular with parameters $(204,28,2,4)$ and $(595,144,18,40)$, the second neighborhhood of vertex in $\Gamma$ is distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$. In this paper automorphisms of strongly regalar graphs with parameters $(204,28,2,4)$, $(595,144,18,40)$ and distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$ are investigated.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2017_14_a6,
     author = {M. S. Nirova},
     title = {Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {178--189},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a6/}
}
TY  - JOUR
AU  - M. S. Nirova
TI  - Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 178
EP  - 189
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a6/
LA  - ru
ID  - SEMR_2017_14_a6
ER  - 
%0 Journal Article
%A M. S. Nirova
%T Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 178-189
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a6/
%G ru
%F SEMR_2017_14_a6
M. S. Nirova. Automorphisms of distance-regular graph with intersection array $\{144,125,32,1;1,8,125,144\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 178-189. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a6/

[1] A. A. Makhnev, D. V. Paduchikh, “On strongly regular graphs with eigenvalue $\mu$ and their extensions”, Proceedings of the Steklov Institute of Mathematics, 285 (2014), 128–135 | DOI | MR

[2] P. J. Cameron, Graphs, Permutation Groups, Cambridge Univ. Press, Cambridge, 1999 | MR

[3] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[4] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl

[5] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81 (2010), 439–442 | DOI | MR | Zbl

[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl