Torsion free affine connections on three-dimensional homogeneous spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 280-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the work is the classification of threedimensional homogeneous spaces with torsion-free invariant affine connections only. In the case considered in the work, a t-equivalence class contains only one space, i.e., invariant affine connections with coinciding geodesics do not exist. The local classification of homogeneous spaces is equivalent to the description of effective pairs of Lie algebras. In this work we use the algebraic approach for description of connections, methods of the theory of Lie groups, Lie algebras and homogeneous spaces.
Keywords: homogeneous space, holonomy algebra.
Mots-clés : invariant connection, transformation group, torsion tensor
@article{SEMR_2017_14_a59,
     author = {N. P. Mozhey},
     title = {Torsion free affine connections on three-dimensional homogeneous spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {280--295},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a59/}
}
TY  - JOUR
AU  - N. P. Mozhey
TI  - Torsion free affine connections on three-dimensional homogeneous spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 280
EP  - 295
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a59/
LA  - en
ID  - SEMR_2017_14_a59
ER  - 
%0 Journal Article
%A N. P. Mozhey
%T Torsion free affine connections on three-dimensional homogeneous spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 280-295
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a59/
%G en
%F SEMR_2017_14_a59
N. P. Mozhey. Torsion free affine connections on three-dimensional homogeneous spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 280-295. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a59/

[1] P. K. Rashevskii, “On the geometry of homogeneous spaces”, Dokl. Akad. Nauk, SSSR (N. S.), 80 (1951), 169–171 | MR | Zbl

[2] P. K. Rashevskii, “On the geometry of homogeneous spaces”, Trudy Sem. Vektor Tenzor Analiz., 9, 1952, 49–74 | MR | Zbl

[3] M. Kurita, “On the vector in homogeneous spaces”, Nagoya Math. J., 5 (1953), 1–33 | DOI | MR | Zbl

[4] E. B. Vinberg, “On invariant linear connections”, Dokl. Akad. Nauk, SSSR, 128 (1959), 653–654 | MR | Zbl

[5] E. B. Vinberg, “Invariant linear connections in a homogeneous space”, Trudy Moscow Mat. Obsc., 9, 1960, 191–210 | MR | Zbl

[6] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, John Wiley and Sons, New York, 1963 ; v. 2, 1969 | MR | Zbl | MR

[7] K. Nomizu, “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl

[8] Nguyen van Hai, “Construction de l'algebre de Lie des transformations infinitesimales affines sur un espace homogene a connexion lineaire invariante”, Comptes Rendus de l'Academie des Sciences, 263 (1966), 876–879 | MR | Zbl

[9] B. Opozda, “A classification of locally homogeneous connections on 2-dimensional manifolds”, Differ. Geom. Appl., 21 (2004), 173–198 | DOI | MR | Zbl

[10] O. Kowalski, B. Opozda, Z. Vlasek, “A classification of locally homogeneous connections on 2-dimensional manifolds via group-theoretical approach”, Cent. Eur. J. Math., 2 (2004), 87–102 | DOI | MR | Zbl

[11] T. Arias-Marco, O. Kowalski, “Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds”, Monatsh. Math., 153 (2008), 1–18 | DOI | MR | Zbl

[12] B. Dubrov, B. Komrakov, Y. Tchempkovsky, “Invariant affine connections on three-dimensional homogeneous spaces”, Preprint series: Pure mathematics, 6 (1996) http://urn.nb.no/URN:NBN:no-47353 | Zbl

[13] A. L. Onischik, Topology tranzitive Lie groups of transformations, Phiz.-math. lit., M., 1995

[14] B. Kostant, “Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifolds”, Trans. Amer. Math. Soc., 80 (1955), 528–542 | DOI | MR | Zbl

[15] A. Lichnerowicz, Geometrie des Groupes de Transformations, Dunod, Paris, 1958 | MR | Zbl

[16] H. C. Wang, “On invariant connections over a principal fibre bundle”, Nagoya Math. J., 13 (1958), 1–19 | DOI | MR | Zbl

[17] N. P. Mozhey, Three-dimensional isotropy-faithful homogeneous spaces and connections on them, Izd-vo Kazan. un-ta, Kazan', 2015