Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a59, author = {N. P. Mozhey}, title = {Torsion free affine connections on three-dimensional homogeneous spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {280--295}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a59/} }
N. P. Mozhey. Torsion free affine connections on three-dimensional homogeneous spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 280-295. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a59/
[1] P. K. Rashevskii, “On the geometry of homogeneous spaces”, Dokl. Akad. Nauk, SSSR (N. S.), 80 (1951), 169–171 | MR | Zbl
[2] P. K. Rashevskii, “On the geometry of homogeneous spaces”, Trudy Sem. Vektor Tenzor Analiz., 9, 1952, 49–74 | MR | Zbl
[3] M. Kurita, “On the vector in homogeneous spaces”, Nagoya Math. J., 5 (1953), 1–33 | DOI | MR | Zbl
[4] E. B. Vinberg, “On invariant linear connections”, Dokl. Akad. Nauk, SSSR, 128 (1959), 653–654 | MR | Zbl
[5] E. B. Vinberg, “Invariant linear connections in a homogeneous space”, Trudy Moscow Mat. Obsc., 9, 1960, 191–210 | MR | Zbl
[6] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, John Wiley and Sons, New York, 1963 ; v. 2, 1969 | MR | Zbl | MR
[7] K. Nomizu, “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl
[8] Nguyen van Hai, “Construction de l'algebre de Lie des transformations infinitesimales affines sur un espace homogene a connexion lineaire invariante”, Comptes Rendus de l'Academie des Sciences, 263 (1966), 876–879 | MR | Zbl
[9] B. Opozda, “A classification of locally homogeneous connections on 2-dimensional manifolds”, Differ. Geom. Appl., 21 (2004), 173–198 | DOI | MR | Zbl
[10] O. Kowalski, B. Opozda, Z. Vlasek, “A classification of locally homogeneous connections on 2-dimensional manifolds via group-theoretical approach”, Cent. Eur. J. Math., 2 (2004), 87–102 | DOI | MR | Zbl
[11] T. Arias-Marco, O. Kowalski, “Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds”, Monatsh. Math., 153 (2008), 1–18 | DOI | MR | Zbl
[12] B. Dubrov, B. Komrakov, Y. Tchempkovsky, “Invariant affine connections on three-dimensional homogeneous spaces”, Preprint series: Pure mathematics, 6 (1996) http://urn.nb.no/URN:NBN:no-47353 | Zbl
[13] A. L. Onischik, Topology tranzitive Lie groups of transformations, Phiz.-math. lit., M., 1995
[14] B. Kostant, “Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifolds”, Trans. Amer. Math. Soc., 80 (1955), 528–542 | DOI | MR | Zbl
[15] A. Lichnerowicz, Geometrie des Groupes de Transformations, Dunod, Paris, 1958 | MR | Zbl
[16] H. C. Wang, “On invariant connections over a principal fibre bundle”, Nagoya Math. J., 13 (1958), 1–19 | DOI | MR | Zbl
[17] N. P. Mozhey, Three-dimensional isotropy-faithful homogeneous spaces and connections on them, Izd-vo Kazan. un-ta, Kazan', 2015