On parameters and discreteness of Maskit subgroups in $\mathrm {PSL} (2, \mathbb{C})$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 125-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1989 B. Maskit formulated the following problem. Let $G$ be the subgroup of ${\rm PSL} (2, \mathbb{C})$ generated by the elements $f$ and $g$, where $f$ has two fixed points in $\overline{\mathbb{C}}$, and $g$ maps one fixed point of $f$ onto the other; when is $G$ discrete? Partial solutions of the problem were found by B. Maskit and E. Klimenko, but complete solution is not known. In this paper, the trace parameters for such groups are considered. Properties of the parameters are used to find new necessary and sufficient discreteness conditions for the groups.
Keywords: discrete group, hyperbolic geometry.
@article{SEMR_2017_14_a57,
     author = {A. V. Maslei},
     title = {On parameters and discreteness of {Maskit} subgroups in $\mathrm {PSL} (2, \mathbb{C})$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a57/}
}
TY  - JOUR
AU  - A. V. Maslei
TI  - On parameters and discreteness of Maskit subgroups in $\mathrm {PSL} (2, \mathbb{C})$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 125
EP  - 134
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a57/
LA  - en
ID  - SEMR_2017_14_a57
ER  - 
%0 Journal Article
%A A. V. Maslei
%T On parameters and discreteness of Maskit subgroups in $\mathrm {PSL} (2, \mathbb{C})$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 125-134
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a57/
%G en
%F SEMR_2017_14_a57
A. V. Maslei. On parameters and discreteness of Maskit subgroups in $\mathrm {PSL} (2, \mathbb{C})$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 125-134. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a57/

[1] Beardon A. F., The Geometry of Discrete Groups, Springer-Verlag, New York–Heidelberg–Berlin, 1983 | MR | Zbl

[2] Jørgensen T., “A note on subgroups of SL(2,C)”, Quart. J. Math. Oxford Ser. (2), 28:110 (1977), 209–211 | DOI | MR

[3] Gilman G., “Two-generator discrete subgroups of PSL(2,C)”, Memoirs of the AMS, 117:561 (1995) | DOI | MR

[4] Gehring F. W., Gilman J. P., Martin G. J., “Kleinian groups with real parameters”, Commun. Contemp. Math., 3:2 (2001), 163–186 | DOI | MR | Zbl

[5] Klimenko E., Kopteva N., “All discrete RP-groups whose generator have real trace”, Int. J. Algebra Comput., 15:3 (2005), 577–618 | DOI | MR | Zbl

[6] Maskit B., “Some special 2-generator Kleinian groups”, Proc. Am. Math. Soc., 106 (1989), 175–186 | MR | Zbl

[7] Klimenko E. Ya., “A class of the 2-generator subgroups of PSL(2,C)”, Siberian Math. J., 30:5 (1990), 723–725 | DOI | MR

[8] Gehring F. W., Martin G. J., “Commutators, collars and the geometry of Mobius groups”, J. Anal. Math., 63:1 (1994), 175–219 | DOI | MR | Zbl

[9] Sato H., “One-parameter families of extreme discrete groups for Jørgensen inequality”, The First Alfors-Bers Colloquium, Contemporary Math., 256, 2000, 271–287 | DOI | MR | Zbl

[10] Vesnin A. Yu., Masley A. V., “On Jørgensen numbers and their analogs for groups of figure-eight orbifolds”, Siberian Mathematical Journal, 55:5 (2014), 807–816 | DOI | MR | Zbl

[11] Gehring F. W., Martin G. J., “Stability and extremality in Jørgensen's inequality”, Complex Variables, Theory Appl., 12:1–4 (1989), 277–282 | DOI | MR | Zbl

[12] Gehring F. W., Martin G. J., “On the Margulis constant for Kleinian groups, I”, Ann. Acad. Sci. Fenn., Math., 21:2 (1996), 439–462 | MR | Zbl

[13] Jørgensen T., “A compact 3-manifolds of constant negative curvature fibering over the circle”, Ann. Math., 106 (1977), 61–72 | DOI | MR

[14] Maskit B., Kleinian groups, Springer-Verlag, New York–Heidelberg–Berlin, 1987 | MR

[15] Maslei A. V., “Sufficient discreteness conditions for subgroups of PSL(2,C) generated by an involution and a nonparabolic element”, Math. Notes, 95:1–2 (2014), 282–285 | DOI | MR | Zbl

[16] Tan D., “On two-generator discrete groups of Mobius transformations”, Proc. Am. Math. Soc., 106 (1989), 763–770 | MR | Zbl