@article{SEMR_2017_14_a56,
author = {Yu. Yu. Bagderina},
title = {Rational integrals of the second degree of two-dimentional geodesic equations},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {33--40},
year = {2017},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a56/}
}
Yu. Yu. Bagderina. Rational integrals of the second degree of two-dimentional geodesic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 33-40. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a56/
[1] A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189 (1998), 1441–1466 | DOI | MR | Zbl
[2] V. V. Kozlov, “On rational integrals of geodesic flows”, Regul. Chaotic Dyn., 19 (2014), 601–606 | DOI | MR | Zbl
[3] R. Bryant, M. Dunajski, M. Eastwood, “Metrisability of two-dimensional projective structures”, J. Diff. Geom., 83 (2009), 465–499 | MR
[4] B. Kruglikov, “Invariant characterization of Liouville metrics and polynomial integrals”, J. Geom. Phys., 58 (2008), 979–995 | DOI | MR | Zbl
[5] Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ODEs for Lie symmetries and first integrals”, J. Phys. A: Math. Theor., 49 (2016), 155202 | DOI | MR | Zbl
[6] M. V. Pavlov, S. P. Tsarev, “On local description of two-dimensional geodesic flows with a polynomial first integral”, J. Phys. A: Math. Theor., 49 (2016), 175201 | DOI | MR | Zbl