Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a56, author = {Yu. Yu. Bagderina}, title = {Rational integrals of the second degree of two-dimentional geodesic equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {33--40}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a56/} }
TY - JOUR AU - Yu. Yu. Bagderina TI - Rational integrals of the second degree of two-dimentional geodesic equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 33 EP - 40 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a56/ LA - ru ID - SEMR_2017_14_a56 ER -
Yu. Yu. Bagderina. Rational integrals of the second degree of two-dimentional geodesic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 33-40. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a56/
[1] A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189 (1998), 1441–1466 | DOI | MR | Zbl
[2] V. V. Kozlov, “On rational integrals of geodesic flows”, Regul. Chaotic Dyn., 19 (2014), 601–606 | DOI | MR | Zbl
[3] R. Bryant, M. Dunajski, M. Eastwood, “Metrisability of two-dimensional projective structures”, J. Diff. Geom., 83 (2009), 465–499 | MR
[4] B. Kruglikov, “Invariant characterization of Liouville metrics and polynomial integrals”, J. Geom. Phys., 58 (2008), 979–995 | DOI | MR | Zbl
[5] Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ODEs for Lie symmetries and first integrals”, J. Phys. A: Math. Theor., 49 (2016), 155202 | DOI | MR | Zbl
[6] M. V. Pavlov, S. P. Tsarev, “On local description of two-dimensional geodesic flows with a polynomial first integral”, J. Phys. A: Math. Theor., 49 (2016), 175201 | DOI | MR | Zbl