Discrete sequences in unbounded domains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 22-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete sequences with respect to the Kobayashi distance in a strongly pseudoconvex bounded domain $D$ are related to Carleson measures by a formula that uses the Euclidean distance from the boundary of $D$. Thus the speed of escape at the boundary of such sequence has been studied in details for strongly pseudoconvex bounded domain $D$. In this note we show that such estimations completely fail if the domain is not bounded.
Keywords: uniformly discrete sequences, unbounded domains.
@article{SEMR_2017_14_a55,
     author = {A. Saracco},
     title = {Discrete sequences in unbounded domains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {22--25},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/}
}
TY  - JOUR
AU  - A. Saracco
TI  - Discrete sequences in unbounded domains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 22
EP  - 25
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/
LA  - en
ID  - SEMR_2017_14_a55
ER  - 
%0 Journal Article
%A A. Saracco
%T Discrete sequences in unbounded domains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 22-25
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/
%G en
%F SEMR_2017_14_a55
A. Saracco. Discrete sequences in unbounded domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 22-25. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/