Discrete sequences in unbounded domains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 22-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete sequences with respect to the Kobayashi distance in a strongly pseudoconvex bounded domain $D$ are related to Carleson measures by a formula that uses the Euclidean distance from the boundary of $D$. Thus the speed of escape at the boundary of such sequence has been studied in details for strongly pseudoconvex bounded domain $D$. In this note we show that such estimations completely fail if the domain is not bounded.
Keywords: uniformly discrete sequences, unbounded domains.
@article{SEMR_2017_14_a55,
     author = {A. Saracco},
     title = {Discrete sequences in unbounded domains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {22--25},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/}
}
TY  - JOUR
AU  - A. Saracco
TI  - Discrete sequences in unbounded domains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 22
EP  - 25
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/
LA  - en
ID  - SEMR_2017_14_a55
ER  - 
%0 Journal Article
%A A. Saracco
%T Discrete sequences in unbounded domains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 22-25
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/
%G en
%F SEMR_2017_14_a55
A. Saracco. Discrete sequences in unbounded domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 22-25. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/

[1] M. Abate, A. Saracco, “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 84 (2011), 587–605 | DOI | MR

[2] F. Bracci, A. Saracco, “Hyperbolicity in unbounded convex domains”, Forum Math., 5 (2009), 815–826 | MR

[3] P. Duren, A. Schuster, D. Vukotić, “On uniformly discrete sequences in the disk”, Quadrature domains and applications, eds. P. Ebenfeld, B. Gustafsson, D. Khavinson, M. Putinar, Birkhäuser, Basel, 2005, 131–150 | DOI | MR | Zbl

[4] P. Duren, R. Weir, “The pseudohyperbolic metric and Bergman spaces in the ball”, Trans. Amer. Math. Soc., 359:1 (2007), 63–76 | DOI | MR | Zbl

[5] M. Jevtić, X. Massaneda, P. J. Thomas, “Interpolating sequences for weighted Bergman spaces of the ball”, Michigan Math. J., 43 (1996), 495–517 | DOI | MR | Zbl

[6] B. D. MacCluer, “Uniformly discrete sequences in the ball”, J. Math. Anal. Appl., 318 (2006), 37–42 | DOI | MR | Zbl

[7] X. Massaneda, “$A^{-p}$ interpolation in the unit ball”, J. London Math. Soc., 52 (1995), 391–401 | DOI | MR | Zbl

[8] N. Nikolov, P. Pflug, W. Zwonek, “An example of a bounded ${\mathbb C}$-convex domain which is not biholomorphic to a convex domain”, Math. Scand., 102:1 (2008), 149–155 | DOI | MR | Zbl

[9] N. Nikolov, A. Saracco, “Hyperbolicity of unbounded $\Bbb C$-convex domains”, C. R. Acad. Bulgare Sci., 60:9 (2007), 737–748 | MR