Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a55, author = {A. Saracco}, title = {Discrete sequences in unbounded domains}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {22--25}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/} }
A. Saracco. Discrete sequences in unbounded domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 22-25. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a55/
[1] M. Abate, A. Saracco, “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 84 (2011), 587–605 | DOI | MR
[2] F. Bracci, A. Saracco, “Hyperbolicity in unbounded convex domains”, Forum Math., 5 (2009), 815–826 | MR
[3] P. Duren, A. Schuster, D. Vukotić, “On uniformly discrete sequences in the disk”, Quadrature domains and applications, eds. P. Ebenfeld, B. Gustafsson, D. Khavinson, M. Putinar, Birkhäuser, Basel, 2005, 131–150 | DOI | MR | Zbl
[4] P. Duren, R. Weir, “The pseudohyperbolic metric and Bergman spaces in the ball”, Trans. Amer. Math. Soc., 359:1 (2007), 63–76 | DOI | MR | Zbl
[5] M. Jevtić, X. Massaneda, P. J. Thomas, “Interpolating sequences for weighted Bergman spaces of the ball”, Michigan Math. J., 43 (1996), 495–517 | DOI | MR | Zbl
[6] B. D. MacCluer, “Uniformly discrete sequences in the ball”, J. Math. Anal. Appl., 318 (2006), 37–42 | DOI | MR | Zbl
[7] X. Massaneda, “$A^{-p}$ interpolation in the unit ball”, J. London Math. Soc., 52 (1995), 391–401 | DOI | MR | Zbl
[8] N. Nikolov, P. Pflug, W. Zwonek, “An example of a bounded ${\mathbb C}$-convex domain which is not biholomorphic to a convex domain”, Math. Scand., 102:1 (2008), 149–155 | DOI | MR | Zbl
[9] N. Nikolov, A. Saracco, “Hyperbolicity of unbounded $\Bbb C$-convex domains”, C. R. Acad. Bulgare Sci., 60:9 (2007), 737–748 | MR