$\Phi$-harmonic functions on graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1-9
Voir la notice de l'article provenant de la source Math-Net.Ru
We study certain problems of $\Phi$-harmonic analysis on graphs, where $\Phi$ is a strictly convex $N$-function.We introduce the key definitions and reveal that the ones in question are well-defined and what basic properties of harmonic functions hold. Also we prove discrete analogs of classical theorems for harmonic function in the usual sense: uniqueness theorem, Harnack’s inequality, Harnack’s principle etc.
Keywords:
$N$-function, $\Phi$-harmonicity, Harnack's inequality, graph.
@article{SEMR_2017_14_a54,
author = {R. Panenko},
title = {$\Phi$-harmonic functions on graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1--9},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a54/}
}
R. Panenko. $\Phi$-harmonic functions on graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1-9. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a54/