$\Phi$-harmonic functions on graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study certain problems of $\Phi$-harmonic analysis on graphs, where $\Phi$ is a strictly convex $N$-function.We introduce the key definitions and reveal that the ones in question are well-defined and what basic properties of harmonic functions hold. Also we prove discrete analogs of classical theorems for harmonic function in the usual sense: uniqueness theorem, Harnack’s inequality, Harnack’s principle etc.
Keywords: $N$-function, $\Phi$-harmonicity, Harnack's inequality, graph.
@article{SEMR_2017_14_a54,
     author = {R. Panenko},
     title = {$\Phi$-harmonic functions on graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a54/}
}
TY  - JOUR
AU  - R. Panenko
TI  - $\Phi$-harmonic functions on graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1
EP  - 9
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a54/
LA  - ru
ID  - SEMR_2017_14_a54
ER  - 
%0 Journal Article
%A R. Panenko
%T $\Phi$-harmonic functions on graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1-9
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a54/
%G ru
%F SEMR_2017_14_a54
R. Panenko. $\Phi$-harmonic functions on graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1-9. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a54/

[1] D. Burago, Yu. Burago, S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33, A.M.S., Providence, 2001 | DOI | MR | Zbl

[2] I. Ekeland, R. Témam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999 | MR | Zbl

[3] M. A. Krasnosel'skii, Ya. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961 | MR

[4] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Pure Appl. Math., 146, Marcel Dekker, New York, 1991 | MR | Zbl

[5] M. M. Rao, Z. D. Ren, Applications of Orlicz spaces, Pure Appl. Math., 250, Marcel Dekker, New York, 2002 | MR | Zbl

[6] P. Soardi, Potential Theory on Infinite Networks, Lecture Notes in Mathematics, 1590, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[7] V. A. Zorich, Mathematical Analysis, v. I, Springer-Verlag, Berlin, 2004 | MR | Zbl

[8] J. Dodziuk, “Laplacian on manifolds and analogous difference operator for graphs”, Contemp. Math., 49, 1986, 45–49 | DOI | MR | Zbl

[9] J. Dodziuk, L. Karp, “Spectral and function theory for combinatorial Laplacians”, Contemp. Math., 73, 1988, 25–40 | DOI | MR | Zbl

[10] I. Holopainen, P. Soardi, “$p$-harmonic functions on graphs and manifolds”, Manuscripta mathematica, 94:1 (1997), 95–110 | DOI | MR | Zbl

[11] M. Kanai, “Rough isometries and the parabolicity of Riemannian manifolds”, J. Math. Soc. Japan, 38 (1986), 227–238 | DOI | MR | Zbl

[12] B. Kleiner, “A new proof of Gromov's theorem on groups of polynomial growth”, J. Amer. Math. Soc., 23:3 (2010), 815–829 | DOI | MR | Zbl

[13] Ya. A. Kopylov, R. A. Panenko, “$\Phi$-harmonic functions on discrete groups and the first $\ell^\Phi$-cohomology”, Sibirsk. Mat. Zh., 55:5 (2014), 1104–1117 | MR

[14] M. Pagliacci, “Heat and wave equation on homogeneous trees”, Boll. Un. Mat. Ital. Ser. VII, A7:1 (1993), 37–45 | MR | Zbl

[15] D. V. Stepovoi, Models and algorithms for solving problems of mathematical physics on oriented graphs and its application in quantum mechanics, Author's Summary of Candidate Dissertation, Rostov-on-Don, 1998