Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1289-1298

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a vector process of a number of urns with fixed quantities of balls in an infinite urn scheme. We assume that probabilities of entering an urn change regularly with exponent minus one. We prove a multidimensional functional central limit theorem for this process.
Keywords: infinite urn scheme; relative compactness; slow variation; functional central limit theorem.
@article{SEMR_2017_14_a52,
     author = {M. G. Chebunin},
     title = {Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1289--1298},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a52/}
}
TY  - JOUR
AU  - M. G. Chebunin
TI  - Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1289
EP  - 1298
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a52/
LA  - ru
ID  - SEMR_2017_14_a52
ER  - 
%0 Journal Article
%A M. G. Chebunin
%T Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1289-1298
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a52/
%G ru
%F SEMR_2017_14_a52
M. G. Chebunin. Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1289-1298. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a52/