Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1289-1298.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a vector process of a number of urns with fixed quantities of balls in an infinite urn scheme. We assume that probabilities of entering an urn change regularly with exponent minus one. We prove a multidimensional functional central limit theorem for this process.
Keywords: infinite urn scheme; relative compactness; slow variation; functional central limit theorem.
@article{SEMR_2017_14_a52,
     author = {M. G. Chebunin},
     title = {Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1289--1298},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a52/}
}
TY  - JOUR
AU  - M. G. Chebunin
TI  - Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1289
EP  - 1298
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a52/
LA  - ru
ID  - SEMR_2017_14_a52
ER  - 
%0 Journal Article
%A M. G. Chebunin
%T Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1289-1298
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a52/
%G ru
%F SEMR_2017_14_a52
M. G. Chebunin. Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1289-1298. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a52/

[1] R.J. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, Institute of Math. Stat., Hayward, California, 1990 | MR | Zbl

[2] R. R. Bahadur, “On the number of distinct values in a large sample from an infinite discrete distribution”, Proceedings of the National Institute of Sciences of India, 26A:2 (1960), 67–75 | MR | Zbl

[3] A. D. Barbour, “Univariate approximations in the infinite occupancy scheme”, ALEA Lat. Am. J. Probab. Math. Stat., 6 (2009), 415–433 | MR

[4] A. D. Barbour, A. V. Gnedin, “Small counts in the infinite occupancy scheme”, Electronic Journal of Probability, 14:13 (2009), 365–384 | DOI | MR | Zbl

[5] P. Billingsley, Convergence of Probability Measures, Second Edition, John Wiley Sons, Inc., New York, 1999 | MR

[6] A. A. Borovkov, Probability Theory, Universitext, Springer, London, 2013 | DOI | MR | Zbl

[7] M. G. Chebunin, “Estimation of parameters of probabilistic models which is based on the number of different elements in a sample”, Sib. Zh. Ind. Mat., 17:3 (2014), 135–147 | MR | Zbl

[8] M. Chebunin, A. Kovalevskii, “Functional central limit theorems for certain statistics in an infinite urn scheme”, Statistics and Probability Letters, 119 (2016), 344–348 | DOI | MR | Zbl

[9] O. Durieu, Y. Wang, “From infinite urn schemes to decompositions of self-similar Gaussian processes”, Electronic Journal of Probability, 21:43 (2016), 1–23 | MR

[10] M. Dutko, “Central limit theorems for infinite urn models”, Ann. Probab., 17 (1989), 1255–1263 | DOI | MR | Zbl

[11] A. Gnedin, B. Hansen, J. Pitman, “Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws”, Probability Surveys, 4 (2007), 146–171 | DOI | MR | Zbl

[12] H.-K. Hwang, S. Janson, “Local Limit Theorems for Finite and Infinite Urn Models”, The Annals of Probability, 36:3 (2008), 992–1022 | DOI | MR | Zbl

[13] S. Karlin, “Central Limit Theorems for Certain Infinite Urn Schemes”, Jounal of Mathematics and Mechanics, 17:4 (1967), 373–401 | MR | Zbl

[14] E. S. Key, “Rare Numbers”, Journal of Theoretical Probability, 5:2 (1992), 375–389 | DOI | MR | Zbl

[15] E. S. Key, “Divergence rates for the number of rare numbers”, Journal of Theoretical Probability, 9:2 (1996), 413–428 | DOI | MR | Zbl

[16] N. S. Zakrevskaya, A. P. Kovalevskii, “One-parameter probabilistic models of text statistics”, Sib. Zh. Ind. Mat., 4:2 (2001), 142–153 | MR | Zbl