Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a5, author = {A. G. Pinus}, title = {On algebraic properties of universal algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {156--162}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a5/} }
A. G. Pinus. On algebraic properties of universal algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 156-162. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a5/
[1] B. I. Plotkin, “Some concepts of algebraic geometry in universal algebra”, Algebra and Analysis, 9:4 (1997), 224–248 | MR | Zbl
[2] E. Yu. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic Geometry on Algebraic Structures. IV: Ecuational Domains and Codomains”, Algebra and Logic, 49:6 (2010), 483–508 | DOI | MR
[3] A. G. Pinus, “On the lattices of algebraic subsets of universal algebras”, Algebra and model theory, 8, Collection of papers, NSTU, Novosibirsk, 2011, 60–66 | Zbl
[4] A. G. Pinus, “On the quasiorders induced by inner homomorphisms and the operator of algebraical closure”, Siberian Math. Journal, 56:3 (2015), 499–504 | DOI | MR | Zbl
[5] A. G. Pinus, “$n$-algebraically complete algebras, pseudodirect products and algebraic closure operator”, Siberian Journal of Pure and Aapplied mathematics, 16:4 (2016), 97–102
[6] A. G. Pinus, “$\mathrm{Ihm}$-admissible and $\mathrm{Ihm}$-forbidden quasiorders on sets”, Siberian Math. Journal, 57:5 (2016), 866–869 | DOI | Zbl