On algebraic properties of universal algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 156-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algebraic closure operator on the universal algebras is studied. Special attention is paid to a description of algebras whose closure operator is trivial.
Keywords: lattices of algebraic sets, inner homomorphisms, algebraic closure operator.
@article{SEMR_2017_14_a5,
     author = {A. G. Pinus},
     title = {On algebraic properties of universal algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {156--162},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a5/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - On algebraic properties of universal algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 156
EP  - 162
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a5/
LA  - ru
ID  - SEMR_2017_14_a5
ER  - 
%0 Journal Article
%A A. G. Pinus
%T On algebraic properties of universal algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 156-162
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a5/
%G ru
%F SEMR_2017_14_a5
A. G. Pinus. On algebraic properties of universal algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 156-162. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a5/

[1] B. I. Plotkin, “Some concepts of algebraic geometry in universal algebra”, Algebra and Analysis, 9:4 (1997), 224–248 | MR | Zbl

[2] E. Yu. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic Geometry on Algebraic Structures. IV: Ecuational Domains and Codomains”, Algebra and Logic, 49:6 (2010), 483–508 | DOI | MR

[3] A. G. Pinus, “On the lattices of algebraic subsets of universal algebras”, Algebra and model theory, 8, Collection of papers, NSTU, Novosibirsk, 2011, 60–66 | Zbl

[4] A. G. Pinus, “On the quasiorders induced by inner homomorphisms and the operator of algebraical closure”, Siberian Math. Journal, 56:3 (2015), 499–504 | DOI | MR | Zbl

[5] A. G. Pinus, “$n$-algebraically complete algebras, pseudodirect products and algebraic closure operator”, Siberian Journal of Pure and Aapplied mathematics, 16:4 (2016), 97–102

[6] A. G. Pinus, “$\mathrm{Ihm}$-admissible and $\mathrm{Ihm}$-forbidden quasiorders on sets”, Siberian Math. Journal, 57:5 (2016), 866–869 | DOI | Zbl