Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a49, author = {A. P. Kovalevskii}, title = {Normality tests for very small sample sizes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1207--1214}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/} }
A. P. Kovalevskii. Normality tests for very small sample sizes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1207-1214. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/
[1] R. D'Agostino, E. S. Pearson, “Tests for departure from normality. Empirical results for the distributions of $b^2$ and $\sqrt{b^1}$”, Biometrika, 60:3 (1973), 613–622 | MR | Zbl
[2] S. S. Shapiro, M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples)”, Biometrika, 52:3/4 (1965), 591–611 | DOI | MR | Zbl
[3] L. Chen, S. S. Shapiro, “An Alternative Test for Normality Based on Normalized Spacings”, J. Statistical Computation and Simulation, 53:3–4 (1995), 269–288 | DOI | Zbl
[4] P. Sperry, Short course in spherical trigonometry, Johnson Publishing Company, Richmond, 1928
[5] A. L. Mackay, “The tetrahedron in curved space — a problem”, Hyperspace, 4:1 (1995), 19–22
[6] D. Derevnin, A. Mednykh, M. Pashkevich, “The volume formula of a symmetric tetrahedrone in hyperbolic and spherical spaces”, Siberian Mathematical Journal, 45:5 (2004), 840–848 | DOI | MR | Zbl
[7] A. Kolpakov, A. Mednykh, M. Pashkevich, “A volume formula for a $Z_2$-symmetric spherical tetrahedra”, Siberian Mathematical Journal, 52:3 (2011), 456–470 | DOI | MR | Zbl
[8] P. Royston, “Approximating the Shapiro-Wilk W-test for non-normality”, Statistics and Computing, 2:3 (1992), 117–119 | DOI