Normality tests for very small sample sizes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1207-1214

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider testing the hypothesis of normality for 2, 3, 4 samples in absence of a priori information about its distribution parameters and alternative hypotheses. We base a precise test on a ratio of a range to a minimal spacing. We compare the test with Shapiro Wilk test.
Keywords: normality test, small sample size, Shapiro & Wilk test, spherical tetrahedron.
Mots-clés : L'Huillier formula
@article{SEMR_2017_14_a49,
     author = {A. P. Kovalevskii},
     title = {Normality tests for very small sample sizes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1207--1214},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/}
}
TY  - JOUR
AU  - A. P. Kovalevskii
TI  - Normality tests for very small sample sizes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1207
EP  - 1214
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/
LA  - ru
ID  - SEMR_2017_14_a49
ER  - 
%0 Journal Article
%A A. P. Kovalevskii
%T Normality tests for very small sample sizes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1207-1214
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/
%G ru
%F SEMR_2017_14_a49
A. P. Kovalevskii. Normality tests for very small sample sizes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1207-1214. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/