Normality tests for very small sample sizes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1207-1214.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider testing the hypothesis of normality for 2, 3, 4 samples in absence of a priori information about its distribution parameters and alternative hypotheses. We base a precise test on a ratio of a range to a minimal spacing. We compare the test with Shapiro Wilk test.
Keywords: normality test, small sample size, Shapiro & Wilk test, spherical tetrahedron.
Mots-clés : L'Huillier formula
@article{SEMR_2017_14_a49,
     author = {A. P. Kovalevskii},
     title = {Normality tests for very small sample sizes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1207--1214},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/}
}
TY  - JOUR
AU  - A. P. Kovalevskii
TI  - Normality tests for very small sample sizes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1207
EP  - 1214
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/
LA  - ru
ID  - SEMR_2017_14_a49
ER  - 
%0 Journal Article
%A A. P. Kovalevskii
%T Normality tests for very small sample sizes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1207-1214
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/
%G ru
%F SEMR_2017_14_a49
A. P. Kovalevskii. Normality tests for very small sample sizes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1207-1214. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a49/

[1] R. D'Agostino, E. S. Pearson, “Tests for departure from normality. Empirical results for the distributions of $b^2$ and $\sqrt{b^1}$”, Biometrika, 60:3 (1973), 613–622 | MR | Zbl

[2] S. S. Shapiro, M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples)”, Biometrika, 52:3/4 (1965), 591–611 | DOI | MR | Zbl

[3] L. Chen, S. S. Shapiro, “An Alternative Test for Normality Based on Normalized Spacings”, J. Statistical Computation and Simulation, 53:3–4 (1995), 269–288 | DOI | Zbl

[4] P. Sperry, Short course in spherical trigonometry, Johnson Publishing Company, Richmond, 1928

[5] A. L. Mackay, “The tetrahedron in curved space — a problem”, Hyperspace, 4:1 (1995), 19–22

[6] D. Derevnin, A. Mednykh, M. Pashkevich, “The volume formula of a symmetric tetrahedrone in hyperbolic and spherical spaces”, Siberian Mathematical Journal, 45:5 (2004), 840–848 | DOI | MR | Zbl

[7] A. Kolpakov, A. Mednykh, M. Pashkevich, “A volume formula for a $Z_2$-symmetric spherical tetrahedra”, Siberian Mathematical Journal, 52:3 (2011), 456–470 | DOI | MR | Zbl

[8] P. Royston, “Approximating the Shapiro-Wilk W-test for non-normality”, Statistics and Computing, 2:3 (1992), 117–119 | DOI