On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1533-1544

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a simple anti-commutative algebra. In this paper we prove that a non skew-symmetric solution of the classical Yang–Baxter equation on $L$ with $L$-invariant symmetric part induces on $L$ a Rota–Baxter operator of a non-zero weight.
Keywords: Rota–Baxter operator, anti-commutative algebra, Lie algebra, Malcev algebra, non-associative bialgebra, classical Yang–Baxter equation.
@article{SEMR_2017_14_a47,
     author = {M. E. Goncharov},
     title = {On {Rota--Baxter} operators of non-zero weight arisen from the solutions of the classical {Yang--Baxter} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1533--1544},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/}
}
TY  - JOUR
AU  - M. E. Goncharov
TI  - On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1533
EP  - 1544
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/
LA  - en
ID  - SEMR_2017_14_a47
ER  - 
%0 Journal Article
%A M. E. Goncharov
%T On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1533-1544
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/
%G en
%F SEMR_2017_14_a47
M. E. Goncharov. On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1533-1544. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/