Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a47, author = {M. E. Goncharov}, title = {On {Rota--Baxter} operators of non-zero weight arisen from the solutions of the classical {Yang--Baxter} equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1533--1544}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/} }
TY - JOUR AU - M. E. Goncharov TI - On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1533 EP - 1544 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/ LA - en ID - SEMR_2017_14_a47 ER -
%0 Journal Article %A M. E. Goncharov %T On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1533-1544 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/ %G en %F SEMR_2017_14_a47
M. E. Goncharov. On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1533-1544. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/
[1] Baxter G., “An analytic problem whose solution follows from a simple algebraic identity”, Pacific J. Math., 10 (1960), 731–742 | DOI | MR | Zbl
[2] Atkinson F. V., “Some aspects of Baxter's functional equation”, J. Math. Anal. Appl., 7 (1963), 1–30 | DOI | MR | Zbl
[3] Rota G. C., “Baxter algebras and combinatorial identities I and II”, Bull. Amer. Math. Soc., 75 (1969), 325–334 | DOI | MR
[4] Miller J. B., “Some properties of Baxter operators”, Acta Math. Acad. Sci. Hungar., 17 (1966), 387–400 | DOI | MR | Zbl
[5] Cartier P., “On the structure of free Baxter algebras”, Adv. Math., 9 (1972), 253–265 | DOI | MR | Zbl
[6] Guo L., An Introduction to Rota–Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA; Higher education press, Beijing, 2012 | MR | Zbl
[7] Drinfeld V. G., “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equation”, Sov. Math. Dokl., 27 (1983), 68–71 | MR | Zbl
[8] Stolin A. A., “Some remarks on Lie bialgebra structures on simple complex Lie algebras”, Commun. Algebra, 27:9 (1999), 4289–4302 | DOI | MR | Zbl
[9] Belavin A. A., Drinfeld V. G., “Solutions of the classical Yang–Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16:3 (1982), 159–180 | DOI | MR
[10] Semenov-Tyan-Shanskii M. A., “What a classical r-matrix is”, Funct. Anal. Appl., 17:4 (1983), 259–272 | DOI | MR
[11] Zhelyabin V. N., “Jordan bialgebras and their connection with Lie bialgebras”, Algebra and logic, 36:1 (1997), 1–15 | DOI | MR
[12] Zhelyabin V. N., “Jordan bialgebras of symmetric elements and Lie bialgebras”, Sib. Math. J., 39:2 (1998), 261–276 | DOI | MR | Zbl
[13] Zhelyabin V. N., “On a class of Jourdan D-bialgebras”, St. Petersburg Mathematical Journal, 11:4 (2000), 589–609 | MR
[14] Goncharov M. E., “The classical Yang–Baxter equation on alternative algebras: The alternative D-bialgebra structure on Cayley–Dickson matrix algebras”, Sib. Math. J., 48:5 (2007), 809–823 | DOI | MR | Zbl
[15] Anquela J. A., Cortes T., Montaner F., “Nonassociative Coalgebras”, Comm. Algebra, 22:12 (1994), 4693–4716 | DOI | MR | Zbl
[16] Goncharov M. E., “Structures of Malcev Bialgebras on a Simple Non-Lie Malcev Algebra”, Commun. Algebra, 40:8 (2012), 3071–3094 | DOI | MR | Zbl
[17] Drinfeld V. G., “Quantum groups”, Proc. Internat. Congr. Math. (Berkeley, 1986), ed. A. M. Gleason, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[18] Malcev A. I., “Analytic loops”, Matem. Sb., 36(78):3 (1955), 569–576 (in Russian) | MR
[19] Kuzmin E. N., Shestakov I. P., “Nonassociative structures”, Algebra-6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 57, VINITI, M., 1990, 179–266 (in Russian) | MR
[20] Sagle A. A., “Simple Malcev algebras over fields of characteristic zero”, Pacific J. Math., 12 (1962), 1047–1078 | DOI | MR
[21] Kuzmin E. N., “Malnev algebras and their representations”, Algebra and Logic, 7:4 (1968), 233–244 | DOI | MR | Zbl
[22] Vershinin V. V., “On Poisson–Malcev Structures”, Acta Applicandae Mathematicae, 75 (2003), 281–292 | DOI | MR | Zbl
[23] Aguiar M., “On the associative analog of Lie bialgebras”, Journal of Algebra, 244 (2001), 492–532 | DOI | MR | Zbl
[24] Polishchuk A., “Clasic Yang–Baxter Equation and the A-constraint”, Advances in Mathematics, 168:1 (2002), 56–96 | DOI | MR
[25] Kuzmin E. N., “Structure and representations of finite-dimensional simple Malcev algebras”, Issled. po teor. kolec i algebr, Trud. inst. matem. SO RAN SSSR, 16, Nauka, Novosibirsk, 1989, 75–101 (in Russian) | MR