On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1533-1544.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a simple anti-commutative algebra. In this paper we prove that a non skew-symmetric solution of the classical Yang–Baxter equation on $L$ with $L$-invariant symmetric part induces on $L$ a Rota–Baxter operator of a non-zero weight.
Keywords: Rota–Baxter operator, anti-commutative algebra, Lie algebra, Malcev algebra, non-associative bialgebra, classical Yang–Baxter equation.
@article{SEMR_2017_14_a47,
     author = {M. E. Goncharov},
     title = {On {Rota--Baxter} operators of non-zero weight arisen from the solutions of the classical {Yang--Baxter} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1533--1544},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/}
}
TY  - JOUR
AU  - M. E. Goncharov
TI  - On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1533
EP  - 1544
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/
LA  - en
ID  - SEMR_2017_14_a47
ER  - 
%0 Journal Article
%A M. E. Goncharov
%T On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1533-1544
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/
%G en
%F SEMR_2017_14_a47
M. E. Goncharov. On Rota--Baxter operators of non-zero weight arisen from the solutions of the classical Yang--Baxter equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1533-1544. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a47/

[1] Baxter G., “An analytic problem whose solution follows from a simple algebraic identity”, Pacific J. Math., 10 (1960), 731–742 | DOI | MR | Zbl

[2] Atkinson F. V., “Some aspects of Baxter's functional equation”, J. Math. Anal. Appl., 7 (1963), 1–30 | DOI | MR | Zbl

[3] Rota G. C., “Baxter algebras and combinatorial identities I and II”, Bull. Amer. Math. Soc., 75 (1969), 325–334 | DOI | MR

[4] Miller J. B., “Some properties of Baxter operators”, Acta Math. Acad. Sci. Hungar., 17 (1966), 387–400 | DOI | MR | Zbl

[5] Cartier P., “On the structure of free Baxter algebras”, Adv. Math., 9 (1972), 253–265 | DOI | MR | Zbl

[6] Guo L., An Introduction to Rota–Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA; Higher education press, Beijing, 2012 | MR | Zbl

[7] Drinfeld V. G., “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equation”, Sov. Math. Dokl., 27 (1983), 68–71 | MR | Zbl

[8] Stolin A. A., “Some remarks on Lie bialgebra structures on simple complex Lie algebras”, Commun. Algebra, 27:9 (1999), 4289–4302 | DOI | MR | Zbl

[9] Belavin A. A., Drinfeld V. G., “Solutions of the classical Yang–Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16:3 (1982), 159–180 | DOI | MR

[10] Semenov-Tyan-Shanskii M. A., “What a classical r-matrix is”, Funct. Anal. Appl., 17:4 (1983), 259–272 | DOI | MR

[11] Zhelyabin V. N., “Jordan bialgebras and their connection with Lie bialgebras”, Algebra and logic, 36:1 (1997), 1–15 | DOI | MR

[12] Zhelyabin V. N., “Jordan bialgebras of symmetric elements and Lie bialgebras”, Sib. Math. J., 39:2 (1998), 261–276 | DOI | MR | Zbl

[13] Zhelyabin V. N., “On a class of Jourdan D-bialgebras”, St. Petersburg Mathematical Journal, 11:4 (2000), 589–609 | MR

[14] Goncharov M. E., “The classical Yang–Baxter equation on alternative algebras: The alternative D-bialgebra structure on Cayley–Dickson matrix algebras”, Sib. Math. J., 48:5 (2007), 809–823 | DOI | MR | Zbl

[15] Anquela J. A., Cortes T., Montaner F., “Nonassociative Coalgebras”, Comm. Algebra, 22:12 (1994), 4693–4716 | DOI | MR | Zbl

[16] Goncharov M. E., “Structures of Malcev Bialgebras on a Simple Non-Lie Malcev Algebra”, Commun. Algebra, 40:8 (2012), 3071–3094 | DOI | MR | Zbl

[17] Drinfeld V. G., “Quantum groups”, Proc. Internat. Congr. Math. (Berkeley, 1986), ed. A. M. Gleason, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[18] Malcev A. I., “Analytic loops”, Matem. Sb., 36(78):3 (1955), 569–576 (in Russian) | MR

[19] Kuzmin E. N., Shestakov I. P., “Nonassociative structures”, Algebra-6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 57, VINITI, M., 1990, 179–266 (in Russian) | MR

[20] Sagle A. A., “Simple Malcev algebras over fields of characteristic zero”, Pacific J. Math., 12 (1962), 1047–1078 | DOI | MR

[21] Kuzmin E. N., “Malnev algebras and their representations”, Algebra and Logic, 7:4 (1968), 233–244 | DOI | MR | Zbl

[22] Vershinin V. V., “On Poisson–Malcev Structures”, Acta Applicandae Mathematicae, 75 (2003), 281–292 | DOI | MR | Zbl

[23] Aguiar M., “On the associative analog of Lie bialgebras”, Journal of Algebra, 244 (2001), 492–532 | DOI | MR | Zbl

[24] Polishchuk A., “Clasic Yang–Baxter Equation and the A-constraint”, Advances in Mathematics, 168:1 (2002), 56–96 | DOI | MR

[25] Kuzmin E. N., “Structure and representations of finite-dimensional simple Malcev algebras”, Issled. po teor. kolec i algebr, Trud. inst. matem. SO RAN SSSR, 16, Nauka, Novosibirsk, 1989, 75–101 (in Russian) | MR