Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a46, author = {V. Yu. Gubarev}, title = {Rota--Baxter operators of weight zero on simple {Jordan} algebra of {Clifford} type}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1524--1532}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a46/} }
TY - JOUR AU - V. Yu. Gubarev TI - Rota--Baxter operators of weight zero on simple Jordan algebra of Clifford type JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1524 EP - 1532 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a46/ LA - en ID - SEMR_2017_14_a46 ER -
V. Yu. Gubarev. Rota--Baxter operators of weight zero on simple Jordan algebra of Clifford type. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1524-1532. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a46/
[1] Jordan P., “Über Verallgemeinerungsmoglichkeiten des Formalismus der Quantenmechanik”, Nachr. Akad. Wiss. Gottingen. Math. Phys. Kl. I, 41 (1933), 209–217 | Zbl
[2] Jordan P., von Neumann J., Wigner E., “On an Algebraic Generalization of the Quantum Mechanical Formalism”, Ann. Math., 35:1 (1934), 29–64 | DOI | MR
[3] McCrimmon K., A taste of Jordan algebras, Springer-Verlag New York Inc., New-York, 2004 | MR | Zbl
[4] Zelmanov E., “On prime Jordan algebras. II”, Siberian Math. J., 24:1 (1983), 73–85 | DOI | MR | Zbl
[5] Jacobson N., Structure and representations of Jordan algebras, AMS Colloquium Publications, XXXIX, Providence, 1968 | MR | Zbl
[6] Zhevlakov K. A., Slin'ko A. M., Shestakov I. P., Shirshov A. I., Rings that are nearly associative, Academic Press, New-York, 1982 | MR | Zbl
[7] Baxter G., “An analytic problem whose solution follows from a simple algebraic identity”, Pacific J. Math., 10 (1960), 731–742 | DOI | MR | Zbl
[8] Guo L., An Introduction to Rota–Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville; Higher education press, Beijing, 2012 | MR | Zbl
[9] Belavin A. A., Drinfel'd V. G., “Solutions of the classical Yang-Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16:3 (1982), 159–180 | DOI | MR
[10] Semenov-Tyan-Shanskii M. A., What is a classical $r$-matrix?, Funct. Anal. Appl., 17:4 (1983), 259–272 | DOI | MR
[11] Aguiar M., “Pre-Poisson algebras”, Lett. Math. Phys., 54 (2000), 263–277 | DOI | MR | Zbl
[12] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210:1 (2000), 249–273 | DOI | MR | Zbl
[13] Bai C., Bellier O., Guo L., Ni X., “Splitting of operations, Manin products, and Rota–Baxter operators”, Int. Math. Res. Notices, 3 (2013), 485–524 | DOI | MR | Zbl
[14] Gubarev V., Kolesnikov P., “Embedding of dendriform algebras into Rota–Baxter algebras”, Cent. Eur. J. Math., 11:2 (2013), 226–245 | MR | Zbl
[15] Chevalley C., “Démonstration d'une hypothèse de M. Artin”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 73–75 | DOI | MR
[16] Warning E., “Bemerkung zur vorstehenden Arbeit von Herrn Chevalley”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 76–83 | DOI | MR
[17] Clark P. L., The Chevalley-Warning Theorem (Featuring ... the Erdös-Ginzburg-Ziv Theorem), http://math.uga.edu/p̃ete/4400ChevalleyWarning.pdf
[18] Heath-Brown D. R., “A Note on the Chevalley–Warning Theorems”, Russian Math. Surveys, 66:2 (2011), 427–436 | DOI | MR