Rota--Baxter operators of weight zero on simple Jordan algebra of Clifford type
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1524-1532.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every Rota–Baxter operator of weight zero on the Jordan algebra of a nondegenerate bilinear symmetric form is nilpotent of index less or equal three. We found exact value of nilpotency index of Rota–Baxter operators of weight zero on simple Jordan algebra of Clifford type over the fields $\mathbb{R}$, $\mathbb{C}$, and $\mathbb{Z}_p$. For $\mathbb{Z}_p$, we essentially use the results from number theory concerned quadratic residues and Chevalley–Warning theorem.
Keywords: Rota–Baxter operator, Jordan algebra of Clifford type, quadratic residue, Chevalley–Warning theorem.
@article{SEMR_2017_14_a46,
     author = {V. Yu. Gubarev},
     title = {Rota--Baxter operators of weight zero on simple {Jordan} algebra of {Clifford} type},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1524--1532},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a46/}
}
TY  - JOUR
AU  - V. Yu. Gubarev
TI  - Rota--Baxter operators of weight zero on simple Jordan algebra of Clifford type
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1524
EP  - 1532
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a46/
LA  - en
ID  - SEMR_2017_14_a46
ER  - 
%0 Journal Article
%A V. Yu. Gubarev
%T Rota--Baxter operators of weight zero on simple Jordan algebra of Clifford type
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1524-1532
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a46/
%G en
%F SEMR_2017_14_a46
V. Yu. Gubarev. Rota--Baxter operators of weight zero on simple Jordan algebra of Clifford type. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1524-1532. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a46/

[1] Jordan P., “Über Verallgemeinerungsmoglichkeiten des Formalismus der Quantenmechanik”, Nachr. Akad. Wiss. Gottingen. Math. Phys. Kl. I, 41 (1933), 209–217 | Zbl

[2] Jordan P., von Neumann J., Wigner E., “On an Algebraic Generalization of the Quantum Mechanical Formalism”, Ann. Math., 35:1 (1934), 29–64 | DOI | MR

[3] McCrimmon K., A taste of Jordan algebras, Springer-Verlag New York Inc., New-York, 2004 | MR | Zbl

[4] Zelmanov E., “On prime Jordan algebras. II”, Siberian Math. J., 24:1 (1983), 73–85 | DOI | MR | Zbl

[5] Jacobson N., Structure and representations of Jordan algebras, AMS Colloquium Publications, XXXIX, Providence, 1968 | MR | Zbl

[6] Zhevlakov K. A., Slin'ko A. M., Shestakov I. P., Shirshov A. I., Rings that are nearly associative, Academic Press, New-York, 1982 | MR | Zbl

[7] Baxter G., “An analytic problem whose solution follows from a simple algebraic identity”, Pacific J. Math., 10 (1960), 731–742 | DOI | MR | Zbl

[8] Guo L., An Introduction to Rota–Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville; Higher education press, Beijing, 2012 | MR | Zbl

[9] Belavin A. A., Drinfel'd V. G., “Solutions of the classical Yang-Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16:3 (1982), 159–180 | DOI | MR

[10] Semenov-Tyan-Shanskii M. A., What is a classical $r$-matrix?, Funct. Anal. Appl., 17:4 (1983), 259–272 | DOI | MR

[11] Aguiar M., “Pre-Poisson algebras”, Lett. Math. Phys., 54 (2000), 263–277 | DOI | MR | Zbl

[12] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210:1 (2000), 249–273 | DOI | MR | Zbl

[13] Bai C., Bellier O., Guo L., Ni X., “Splitting of operations, Manin products, and Rota–Baxter operators”, Int. Math. Res. Notices, 3 (2013), 485–524 | DOI | MR | Zbl

[14] Gubarev V., Kolesnikov P., “Embedding of dendriform algebras into Rota–Baxter algebras”, Cent. Eur. J. Math., 11:2 (2013), 226–245 | MR | Zbl

[15] Chevalley C., “Démonstration d'une hypothèse de M. Artin”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 73–75 | DOI | MR

[16] Warning E., “Bemerkung zur vorstehenden Arbeit von Herrn Chevalley”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 76–83 | DOI | MR

[17] Clark P. L., The Chevalley-Warning Theorem (Featuring ... the Erdös-Ginzburg-Ziv Theorem), http://math.uga.edu/p̃ete/4400ChevalleyWarning.pdf

[18] Heath-Brown D. R., “A Note on the Chevalley–Warning Theorems”, Russian Math. Surveys, 66:2 (2011), 427–436 | DOI | MR