Expansions of categorical antiadditive Horn theories till additive
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1480-1491.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is a characterization of definable permutation groups in categorical Horn theories. This characterization implies the theorem that there exist categorical Horn theories which can not be expanded till categorical additive Horn theories.
Keywords: categorical Horn theory, antiadditive theory, additive theory, expansion of theory.
@article{SEMR_2017_14_a44,
     author = {E. A. Palyutin},
     title = {Expansions of categorical antiadditive {Horn} theories till additive},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1480--1491},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a44/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - Expansions of categorical antiadditive Horn theories till additive
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1480
EP  - 1491
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a44/
LA  - ru
ID  - SEMR_2017_14_a44
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T Expansions of categorical antiadditive Horn theories till additive
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1480-1491
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a44/
%G ru
%F SEMR_2017_14_a44
E. A. Palyutin. Expansions of categorical antiadditive Horn theories till additive. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1480-1491. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a44/

[1] E.A. Palyutin, “Additive theories”, Proceedings of Logic Colloquium'98, Lectures Notes in Logic, 13, ASL, Massachusetts, 2000, 352–356 | MR

[2] E.A. Palyutin, “Categorical Horn classes. 1”, Algebra and Logic, 19:5 (1980), 377–400 | DOI | MR

[3] E.A. Palyutin, “Categorical Horn classes. 2”, Algebra and Logic, 49:6 (2010), 526–538 | DOI | MR

[4] Yu.L. Ershov, E.A. Palyutin, Mathematical Logic, Fizmatlit, M., 2011 (in Russian) | MR

[5] E.A. Palyutin, “The description of categorical quasivarieties”, Algebra and Logic, 14:2 (1975), 145–185 | DOI | MR | Zbl

[6] E.A. Palyutin, “Primitively connected theories”, Algebra and Logic, 39:2 (2000), 84–97 | DOI | MR | Zbl

[7] K. Urbanik, “A representation theorem for $v^\ast$-algebras”, Fund. Math., 52:3 (1963), 291–317 | DOI | MR | Zbl

[8] S.I. Adian, “Classifications of periodic words and their application in group theory”, Burnside Groups, Proceedings of a Workshop Held at the University of Bielefeld, Germany, Lecture Notes in Mathematics, 806, Springer-Verlag, Berlin–Heidelberg–New York, 1980, 1–40 | DOI | MR