Herstein's construction for just infinite superalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1317-1323.

Voir la notice de l'article provenant de la source Math-Net.Ru

The connections between semiprime associative $Z_{2}$-graded algebras and Jordan superalgebras are studied. It is proved that if an adjoint Jordan superalgebra $B^{(+)_{s}}$ to an associative noncommutative $Z_{2}$-graded semiprime superalgebra $B$ contains an ideal, consisted of odd elements, then the center of algebra $B$ contains a nonzero ideal. Besides, this ideal annihilates every commutator of the algebra $B$. As a corollary we have that if a $Z_{2}$-graded algebra $B$ is just infinite then a Jordan superalgebra $B^{(+)_{s}}$ is just infinite.
Mots-clés : associative algebras
Keywords: Jordan superalgebras, just infinite algebras, semiprime algebras.
@article{SEMR_2017_14_a39,
     author = {V. N. Zhelyabin and A. S. Panasenko},
     title = {Herstein's construction for just infinite superalgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1317--1323},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
AU  - A. S. Panasenko
TI  - Herstein's construction for just infinite superalgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1317
EP  - 1323
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/
LA  - ru
ID  - SEMR_2017_14_a39
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%A A. S. Panasenko
%T Herstein's construction for just infinite superalgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1317-1323
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/
%G ru
%F SEMR_2017_14_a39
V. N. Zhelyabin; A. S. Panasenko. Herstein's construction for just infinite superalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1317-1323. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/

[1] I.N. Herstein, “On the Lie and Jordan Rings of a Simple Associative Ring”, American Journal of Mathematics, 77:2 (1955), 279–285 | DOI | MR | Zbl

[2] K. McCrimmon, “On Herstein's Theorems Relating Jordan and Associative Algebras”, Journal of Algebra, 13 (1969), 382–392 | DOI | MR | Zbl

[3] C. Gomez-Ambrosi, F. Montaner, “On Herstein's Constructions Relating Jordan and Associative Superalgebras”, Comm. in Algebra, 28:8 (2000), 3743–3762 | DOI | MR | Zbl

[4] C. Pendergrass-Rice, Extending a theorem of Herstein, 2007, arXiv: 0710.5545v1 | MR

[5] V.N. Zhelyabin, A.S. Panasenko, “Just infinite Jordan algebras”, Algebra and Logic (to appear) | MR

[6] D.R. Farkas, L.W. Small, “Algebras which are nearly finite dimensional and their identities”, Israel J. Math., 127 (2002), 245–251 | DOI | MR | Zbl

[7] J. Farina, C. Pendergrass-Rice, “A Few Properties of Just Infinite Algebras”, Comm. in Algebra, 35:5 (2007), 1703–1707 | DOI | MR | Zbl

[8] J. Farina, C. Pendergrass-Rice, J. Bell, “Stably Just Inifinite Algebras”, J. Algebra, 319:6 (2008), 2533–2544 | DOI | MR | Zbl

[9] Z. Reichstein, D. Rogalski, J. J. Zhang, “Projectively simple rings”, Adv. Math., 203:2 (2006), 365–407 | DOI | MR | Zbl

[10] A.S. Panasenko, “Just infinite alternative algebras”, Math. Notes, 98:5 (2015), 805–812 | DOI | MR | Zbl

[11] V.N. Zhelyabin, A.S. Panasenko, “Nil ideals of finite codimension in alternative Noetherian algebras”, Math. Notes, 101:3 (2017), 460–466 | DOI | MR | Zbl

[12] A. Shalev, E. Zelmanov, “Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra”, J. Algebra, 189:2 (1997), 294–331 | DOI | MR | Zbl

[13] N. Gavioli, V. Monti, C. Scoppola, “Just infinite periodic Lie algebras”, Proceedings of the Gainesville Conference on Finite Groups, 2003, 73–85 | MR

[14] O.A. de Morais Costa, V. Petrogradsky, Fractal just infinite nil Lie superalgebra of finite width, 2017, arXiv: 1707.06614v1