Herstein's construction for just infinite superalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1317-1323
Voir la notice de l'article provenant de la source Math-Net.Ru
The connections between semiprime
associative $Z_{2}$-graded algebras and Jordan superalgebras are
studied. It is proved that if an adjoint Jordan superalgebra
$B^{(+)_{s}}$ to an associative noncommutative $Z_{2}$-graded
semiprime superalgebra $B$ contains an ideal, consisted of odd
elements, then the center of algebra $B$ contains a nonzero ideal.
Besides, this ideal annihilates every commutator of the algebra
$B$. As a corollary we have that if a $Z_{2}$-graded algebra $B$
is just infinite then a Jordan superalgebra $B^{(+)_{s}}$ is just
infinite.
Mots-clés :
associative algebras
Keywords: Jordan superalgebras, just infinite algebras, semiprime algebras.
Keywords: Jordan superalgebras, just infinite algebras, semiprime algebras.
@article{SEMR_2017_14_a39,
author = {V. N. Zhelyabin and A. S. Panasenko},
title = {Herstein's construction for just infinite superalgebras},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1317--1323},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/}
}
TY - JOUR AU - V. N. Zhelyabin AU - A. S. Panasenko TI - Herstein's construction for just infinite superalgebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1317 EP - 1323 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/ LA - ru ID - SEMR_2017_14_a39 ER -
V. N. Zhelyabin; A. S. Panasenko. Herstein's construction for just infinite superalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1317-1323. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/