Herstein's construction for just infinite superalgebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1317-1323

Voir la notice de l'article provenant de la source Math-Net.Ru

The connections between semiprime associative $Z_{2}$-graded algebras and Jordan superalgebras are studied. It is proved that if an adjoint Jordan superalgebra $B^{(+)_{s}}$ to an associative noncommutative $Z_{2}$-graded semiprime superalgebra $B$ contains an ideal, consisted of odd elements, then the center of algebra $B$ contains a nonzero ideal. Besides, this ideal annihilates every commutator of the algebra $B$. As a corollary we have that if a $Z_{2}$-graded algebra $B$ is just infinite then a Jordan superalgebra $B^{(+)_{s}}$ is just infinite.
Mots-clés : associative algebras
Keywords: Jordan superalgebras, just infinite algebras, semiprime algebras.
@article{SEMR_2017_14_a39,
     author = {V. N. Zhelyabin and A. S. Panasenko},
     title = {Herstein's construction for just infinite superalgebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1317--1323},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
AU  - A. S. Panasenko
TI  - Herstein's construction for just infinite superalgebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1317
EP  - 1323
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/
LA  - ru
ID  - SEMR_2017_14_a39
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%A A. S. Panasenko
%T Herstein's construction for just infinite superalgebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1317-1323
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/
%G ru
%F SEMR_2017_14_a39
V. N. Zhelyabin; A. S. Panasenko. Herstein's construction for just infinite superalgebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1317-1323. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a39/