Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a38, author = {P. S. Kolesnikov}, title = {Self-dual binary quadratic operads}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1299--1306}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a38/} }
P. S. Kolesnikov. Self-dual binary quadratic operads. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1299-1306. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a38/
[1] V. Ginzburg, M. Kapranov, “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl
[2] J.-L. Loday, B. Vallette, Algebraic Operads, Gründlehren Math. Wiss., 346, Springer-Verlag, Heidelberg, 2012 | DOI | MR | Zbl
[3] A. S. Dzhumadil'daev, “Codimension growth and non-Koszulity of Novikov operad”, Comm. Algebra, 39 (2011), 2943–2952 | DOI | MR | Zbl
[4] A. I. Mal'cev, “On algebras defined by identities”, Mat. Sbornik N. S., 26(68) (1950), 19–33 (Russian) | MR
[5] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-3 — A computer algebra system for polynomial computations, , 2011 http://www.singular.uni-kl.de
[6] M. Markl, E. Remm, “Algebras with one operation including Poisson and other Lie-admissible algebras”, J. Algebra, 299 (2006), 171–189 | DOI | MR | Zbl