Self-dual binary quadratic operads
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1299-1306.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe those binary quadratic operads generated by a two-dimensional space that are isomorphic to their Koszul dual operads.
Keywords: nonassociative algebra, operad, Koszul duality.
@article{SEMR_2017_14_a38,
     author = {P. S. Kolesnikov},
     title = {Self-dual binary quadratic operads},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1299--1306},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a38/}
}
TY  - JOUR
AU  - P. S. Kolesnikov
TI  - Self-dual binary quadratic operads
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1299
EP  - 1306
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a38/
LA  - en
ID  - SEMR_2017_14_a38
ER  - 
%0 Journal Article
%A P. S. Kolesnikov
%T Self-dual binary quadratic operads
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1299-1306
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a38/
%G en
%F SEMR_2017_14_a38
P. S. Kolesnikov. Self-dual binary quadratic operads. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1299-1306. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a38/

[1] V. Ginzburg, M. Kapranov, “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl

[2] J.-L. Loday, B. Vallette, Algebraic Operads, Gründlehren Math. Wiss., 346, Springer-Verlag, Heidelberg, 2012 | DOI | MR | Zbl

[3] A. S. Dzhumadil'daev, “Codimension growth and non-Koszulity of Novikov operad”, Comm. Algebra, 39 (2011), 2943–2952 | DOI | MR | Zbl

[4] A. I. Mal'cev, “On algebras defined by identities”, Mat. Sbornik N. S., 26(68) (1950), 19–33 (Russian) | MR

[5] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-3 — A computer algebra system for polynomial computations, , 2011 http://www.singular.uni-kl.de

[6] M. Markl, E. Remm, “Algebras with one operation including Poisson and other Lie-admissible algebras”, J. Algebra, 299 (2006), 171–189 | DOI | MR | Zbl