Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1064-1077.

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{63,60,1; 1,4, 63\}$. Let $G={\rm Aut}(\Gamma)$, $\bar G=G/S(G)$, $\bar T$ is the socle of $\bar G$. If $\Gamma$ is vertex-symmetric then the possible structure of $G$ is determined. In the case $\bar T\cong U_3(3)$ graph exist and is arc-transitive.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2017_14_a31,
     author = {A. A. Makhnev and M. P. Golubyatnikov},
     title = {Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1064--1077},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a31/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. P. Golubyatnikov
TI  - Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1064
EP  - 1077
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a31/
LA  - ru
ID  - SEMR_2017_14_a31
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. P. Golubyatnikov
%T Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1064-1077
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a31/
%G ru
%F SEMR_2017_14_a31
A. A. Makhnev; M. P. Golubyatnikov. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1064-1077. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a31/

[1] A.A. Makhnev, M.S Nirova, “On distance-regular graphs with $\lambda=2$”, Jornal of Siberian Federal Univ., 7:2 (2014), 188–194 | MR

[2] A.A. Makhnev, L.Yu. Tsiovkina, “On automorphisms of a distance-regular graph with intersection array $\{42,39,1;1,3,42\}$”, Doklady Akademii nauk, 441:3 (2011), 305–309 | MR | Zbl

[3] L.Yu. Tsiovkina, “On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$”, Siberian Electronic Mathematical Reports, 10 (2013), 689–698 | MR | Zbl

[4] V.P. Burichenko, A.A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{15,12,1;1,4,15\}$”, Doklady Akademii nauk, 460:3 (2015), 255–259 | MR | Zbl

[5] A.A. Makhnev, V. I. Belousova, “Automorphisms of a distance-regular graph with intersection array $\{45,42,1;1,6,45\}$”, Siberian Electronic Mathematical Reports, 13 (2016), 130–136 | MR | Zbl

[6] A.A. Makhnev, N.V. Chuksina, “On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$”, Siberian Electronic Mathematical Reports, 12 (2015), 802–809 | MR | Zbl

[7] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl

[8] P.J. Cameron, Permutation Groups, London Math Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[9] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{56,45,1;1,9,56\}$”, Doklady Akademii nauk, 432:5 (2010), 583–587 | MR | Zbl

[10] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR | Zbl

[11] A.A. Makhnev, D.V. Paduchikh, L.Yu. Tsiovkina, “Edge-symmetric distance-regular coverings of cliques: The affine case”, Sibirskii Matematicheskii Zhurnal, 54:6 (2013), 1353–1367 | MR | Zbl