On maximal graphical partitions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 112-124
Voir la notice de l'article provenant de la source Math-Net.Ru
A partition of an integer $m$ is a sequence of nonnegative integers in nonincreasing order whose sum is equal to $m$. The length of a partition is the number of its nonzero parts. The set of all graphical partitions of $2m$, for a given $m$, is an order ideal of the lattice of all partitions of $2m$. We find new characterization of maximal graphical partitions and the number of maximal graphical partitions of length $n$. For each graphical partition $\lambda$ of integer $2m$ we construct maximal graphical partition $\mu$ of integer $2m$ with the same rank, which is dominate $\lambda$; also we find an algorithm that builds a sequence of elementary transformations from $\mu$ to $\lambda$.
Keywords:
graph, lattice, graphical partition, Ferrer's diagram.
Mots-clés : integer partition
Mots-clés : integer partition
@article{SEMR_2017_14_a3,
author = {V. A. Baransky and T. A. Senchonok},
title = {On maximal graphical partitions},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {112--124},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a3/}
}
V. A. Baransky; T. A. Senchonok. On maximal graphical partitions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 112-124. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a3/