Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a3, author = {V. A. Baransky and T. A. Senchonok}, title = {On maximal graphical partitions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {112--124}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a3/} }
V. A. Baransky; T. A. Senchonok. On maximal graphical partitions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 112-124. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a3/
[1] M. O. Asanov, V. A. Baransky, V. V. Rasin, Discretnaya matematika: grafy, matroidy, algoritmy, Lan', Sankt-Peterburg, 2010
[2] G. E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1976 | MR
[3] T. Brylawski, “The lattice of integer partitions”, Discrete Mathematics, 6 (1973), 210–219 | MR
[4] Baransky V. A., Koroleva T. A., “Reshetka razbieniy naturalnogo chisla”, Doklady RAN, 418:4 (2008), 439–442 | Zbl
[5] Baransky V. A., Koroleva T. A., Senchonok T. A., “O reshetke razbieniy naturalnogo chisla”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 21, no. 3, 2015, 30–36 | MR | Zbl
[6] V. A. Baransky, T. A. Koroleva, T. A. Senchonok, “On the partition lattice of all integers”, Siberian Electronic Mathematical Reports, 13 (2016), 744–753
[7] V. A. Baransky, T. I. Nadymova, T. A. Senchonok, “A new algorithm generating graphical sequences”, Siberian Electronic Mathematical Reports, 13 (2016), 269–279 | Zbl
[8] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lekcii po teorii grafov, Nauka, M., 1990 | MR
[9] N. V. R. Mahadev, U. N. Peled, Threshold Graphs and Related Topics, Annals of Discrete Mathematics, Elsevier Science, 1995 | MR | Zbl
[10] A. Kohnert, “Dominance order and graphical partitions”, Electronic Journal of Combinatorics, 11:4 (2004), 1–17 | MR | Zbl
[11] P. Erdös, T. Gallai, “Graphs with given degree of vertices”, Matematekai Lapok, 11 (1960), 264–274