On maximal graphical partitions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 112-124

Voir la notice de l'article provenant de la source Math-Net.Ru

A partition of an integer $m$ is a sequence of nonnegative integers in nonincreasing order whose sum is equal to $m$. The length of a partition is the number of its nonzero parts. The set of all graphical partitions of $2m$, for a given $m$, is an order ideal of the lattice of all partitions of $2m$. We find new characterization of maximal graphical partitions and the number of maximal graphical partitions of length $n$. For each graphical partition $\lambda$ of integer $2m$ we construct maximal graphical partition $\mu$ of integer $2m$ with the same rank, which is dominate $\lambda$; also we find an algorithm that builds a sequence of elementary transformations from $\mu$ to $\lambda$.
Keywords: graph, lattice, graphical partition, Ferrer's diagram.
Mots-clés : integer partition
@article{SEMR_2017_14_a3,
     author = {V. A. Baransky and T. A. Senchonok},
     title = {On maximal graphical partitions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a3/}
}
TY  - JOUR
AU  - V. A. Baransky
AU  - T. A. Senchonok
TI  - On maximal graphical partitions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 112
EP  - 124
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a3/
LA  - ru
ID  - SEMR_2017_14_a3
ER  - 
%0 Journal Article
%A V. A. Baransky
%A T. A. Senchonok
%T On maximal graphical partitions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 112-124
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a3/
%G ru
%F SEMR_2017_14_a3
V. A. Baransky; T. A. Senchonok. On maximal graphical partitions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 112-124. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a3/