On groups isospectral to the automorphism group of the second sporadic group of Janko
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1011-1016.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every finite group having the same set of element orders as $Aut(J_2)$ is isomorphic either to $Aut(J_2)$ or to an extension of a non-trivial $2$-group by $A_8$, or to some soluble group.
Keywords: isospectral groups, sporadic groups of Janko, finite groups.
Mots-clés : Frobenius group
@article{SEMR_2017_14_a29,
     author = {A. Kh. Zhurtov and M. Kh. Shermetova},
     title = {On groups isospectral to the automorphism group of the second sporadic group of {Janko}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1011--1016},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a29/}
}
TY  - JOUR
AU  - A. Kh. Zhurtov
AU  - M. Kh. Shermetova
TI  - On groups isospectral to the automorphism group of the second sporadic group of Janko
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1011
EP  - 1016
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a29/
LA  - ru
ID  - SEMR_2017_14_a29
ER  - 
%0 Journal Article
%A A. Kh. Zhurtov
%A M. Kh. Shermetova
%T On groups isospectral to the automorphism group of the second sporadic group of Janko
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1011-1016
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a29/
%G ru
%F SEMR_2017_14_a29
A. Kh. Zhurtov; M. Kh. Shermetova. On groups isospectral to the automorphism group of the second sporadic group of Janko. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1011-1016. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a29/

[1] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1979 | MR | Zbl

[2] C. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, American Mathematical Soc., 1966 | MR

[3] J. H. Conway, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, 1985 | MR | Zbl

[4] M. Aschbacher, Finite Groups Theory, Cambridge, 1986 | MR

[5] D. Gorenstein, Finite Groups, Chelsea Publishing Company, 1980 | MR | Zbl

[6] A. S. Kondratiev, “Finite groups with a graph of prime numbers, like the group $Aut(J_2)$”, Proc. Steklov Inst. Math., 283:1, Suppl. (2013), 78–85 | DOI | MR

[7] V. D. Mazurov, “Characterizations of finite groups by sets of element orders”, Algebra and Logic, 36:1 (1997), 23–32 | DOI | MR | Zbl

[8] V. D. Mazurov, A. R. Moghaddamfar, “Recognizing by Spectrum for the Automorphism Groups of Sporadic Simple Groups”, Commun. Math. Stat., 3:4 (2015), 491–496 | DOI | MR | Zbl

[9] J. S. Williams, “Prime Graph Components of Finite Groups”, Journal of Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[10] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Math. Reports, 6 (2009), 1–12 | MR | Zbl

[11] C. Jansen, K. Lux, R. Parker, R. Wilson, An atlas of Brauer characters, Clarendon Press, Oxford–New York, 1995 | MR | Zbl

[12] ATLAS of Finite Group Representations — Version 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/

[13] G. Higmen, Odd characterizations of finite simple groups, Lecture notes, Univ. Michigan, 1868