On groups isospectral to the automorphism group of the second sporadic group of Janko
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1011-1016

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every finite group having the same set of element orders as $Aut(J_2)$ is isomorphic either to $Aut(J_2)$ or to an extension of a non-trivial $2$-group by $A_8$, or to some soluble group.
Keywords: isospectral groups, sporadic groups of Janko, finite groups.
Mots-clés : Frobenius group
@article{SEMR_2017_14_a29,
     author = {A. Kh. Zhurtov and M. Kh. Shermetova},
     title = {On groups isospectral to the automorphism group of the second sporadic group of {Janko}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1011--1016},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a29/}
}
TY  - JOUR
AU  - A. Kh. Zhurtov
AU  - M. Kh. Shermetova
TI  - On groups isospectral to the automorphism group of the second sporadic group of Janko
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1011
EP  - 1016
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a29/
LA  - ru
ID  - SEMR_2017_14_a29
ER  - 
%0 Journal Article
%A A. Kh. Zhurtov
%A M. Kh. Shermetova
%T On groups isospectral to the automorphism group of the second sporadic group of Janko
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1011-1016
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a29/
%G ru
%F SEMR_2017_14_a29
A. Kh. Zhurtov; M. Kh. Shermetova. On groups isospectral to the automorphism group of the second sporadic group of Janko. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1011-1016. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a29/