On recognition of alternating groups by prime graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 994-1010.

Voir la notice de l'article provenant de la source Math-Net.Ru

The prime graph $GK(G)$ of a finite group $G$ is the graph whose vertex set is the set of prime divisors of $|G|$ and in which two distinct vertices $r$ and $s$ are adjacent if and only if there exists an element of $G$ of order $rs$. Let $Alt_n$ denote the alternating group of degree $n$. Assume that $p\geq13$ is a prime and $n$ is an integer such that $p\leq n\leq p+3$. We prove that if $G$ is a finite group such that $GK(G)=GK(Alt_n)$, then $G$ has a unique nonabelian composition factor, and this factor is isomorphic to $Alt_t$, where $p\leq t\leq p+3$.
Keywords: alternating group, prime graph, simple groups.
@article{SEMR_2017_14_a28,
     author = {A. M. Staroletov},
     title = {On recognition of alternating groups by prime graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {994--1010},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a28/}
}
TY  - JOUR
AU  - A. M. Staroletov
TI  - On recognition of alternating groups by prime graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 994
EP  - 1010
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a28/
LA  - en
ID  - SEMR_2017_14_a28
ER  - 
%0 Journal Article
%A A. M. Staroletov
%T On recognition of alternating groups by prime graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 994-1010
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a28/
%G en
%F SEMR_2017_14_a28
A. M. Staroletov. On recognition of alternating groups by prime graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 994-1010. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a28/

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[2] W. J. Shi, “A characteristic property of $A_5$”, J. Southwest-China Teach. Univ., 11 (1986), 11–14

[3] I. B. Gorshkov, “Recognizability of alternating groups by spectrum”, Algebra Logic, 52:1 (2013), 41–45 | DOI | MR | Zbl

[4] R. Brandl, W. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 43:2 (1991), 388–400 | DOI | MR

[5] V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra Logic, 37:6 (1998), 371–379 | DOI | MR | Zbl

[6] Y. V. Lytkin, “On groups critical with respect to a set of natural numbers”, Sib. Electron. Math. Rep., 10 (2013), 666–675 | MR | Zbl

[7] A. M. Staroletov, “Groups isospectral to the degree 10 alternating group”, Siberian Math. J., 51:3 (2010), 507–514 | DOI | MR | Zbl

[8] A. S. Kondrat'ev, “Finite groups with the same prime graph as the group $A_{10}$”, Proc. Steklov Inst. Math., 285, suppl. 1 (2014), 99–107 | DOI | MR | Zbl

[9] B. Khosravi, A. Zarea Moghanjoghi, “Quasirecognition by prime graph of some alternating groups”, Int. J. Contemp. Math. Sci., 2:25–28 (2007), 1351–1358 | DOI | MR | Zbl

[10] M. A. Zvezdina, “On nonabelian simple groups with the same prime graph as an alternating group”, Sib. Math. J., 54:1 (2013), 47–55 | DOI | MR | Zbl

[11] M. R. Zinov'eva, V. D. Mazurov, “On finite groups with disconnected prime graph”, Proc. Steklov Inst. Math., 283:1 (2013), 139–145 | DOI | MR

[12] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. Electr. Math. Rep., 6 (2009), 1–12 | MR | Zbl

[13] V. D. Mazurov, A. V. Zavarnitsine, “Element orders in coverings of symmetric and alternating groups”, Algebra and Logic, 38:3 (1999), 159–170 | DOI | MR | Zbl

[14] A. V. Vasil'ev, “On finite groups isospectral to simple classical groups”, J. Algebra, 423 (2015), 318–374 | DOI | MR | Zbl

[15] J. B. Rosser, L. Schoenfeld, “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6:1 (1962), 64–94 | MR | Zbl

[16] P. Dusart, “Explicit estimates of some functions over primes”, Ramanujan J., 2016 | DOI

[17] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl

[18] M. A. Grechkoseeva, D. V. Lytkin, “Almost recognizability by spectrum of finite simple linear groups of prime dimension”, Sib. Math. J., 53:4 (2012), 645–655 | DOI | MR | Zbl

[19] A. V. Vasil'ev, “On a relation between the structure of a finite group and the properties of its prime graph”, Siberian Math. J., 46:3 (2005), 396–404 | DOI | MR | Zbl

[20] A. V. Vasil'ev, I. B. Gorshkov, “On the recognition of finite simple groups with a connected prime graph”, Siberian Math. J., 50:2 (2009), 233–238 | DOI | MR | Zbl

[21] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[22] D. N. Lehmer, List of prime numbers from 1 to 10006721, Carnegie Institution, Washington, DC, 1914

[23] A. V. Vasil'ev, E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra Logic, 44:6 (2005), 381–406 | DOI | MR | Zbl

[24] A. V. Vasil'ev, E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group”, Algebra Logic, 50:4 (2011), 291–322 | DOI | MR | Zbl

[25] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.5, , 2016 http://www.gap-system.org

[26] A. A. Buturlakin, “Spectra of finite linear and unitary groups”, Algebra Logic, 47:2 (2008), 91–99 | DOI | MR | Zbl

[27] A. A. Buturlakin, “Spectra of finite symplectic and orthogonal groups”, Siberian Adv. in Math., 21:3 (2011), 176–210 | DOI | MR

[28] L. J. Lander, T. R. Parkin, “On first appearance of prime differences”, Math. Comp., 21 (1967), 483–488 | DOI | MR | Zbl