Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a25, author = {A. I. Budkin}, title = {On groups which are not finitely defined in every quasivariety of groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {937--945}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/} }
A. I. Budkin. On groups which are not finitely defined in every quasivariety of groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 937-945. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/
[1] M. I. Kargapolov, J. I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979 | MR | Zbl
[2] C. R. Combrink, E. E. Dean, “$Z$-group wreath products”, Czechosl. Math. J., 33:1 (1983), 34–36 | MR | Zbl
[3] V. M. Kopytov, Lattice-ordered groups, Nauka, M., 1984 | MR | Zbl
[4] A. I. Budkin, “Quasivarieties of groups closed with respect to restricted wreath products”, Math. USSR-Sb., 49 (1984), 503–514 | DOI | Zbl
[5] A. I. Budkin, “Quasivarieties of groups closed under wreath products and wreath Z-products”, Algebra and Logic, 38 (1999), 137–143 | DOI | MR | Zbl
[6] B. H. Neumann, H. Neumann, “Embedding theorems for groups”, J. London Math. Soc., 34 (1959), 465–479 | DOI | MR | Zbl
[7] A. I. Budkin, “Q-theories of 2-generated groups with given axiomatic rank”, Algebra and Logic, 28 (1989), 341–348 | DOI | MR | Zbl
[8] V. D. Mazurov, E. I. Khukhro (eds.), Unsolved problems in group theory. The Kourovka Notebook, 18th edn, Sobolev Institute of Mathematics, Novosibirsk, 2014 | MR
[9] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, 1998 | MR | Zbl
[10] A. I. Budkin, Quasivarieties of groups, Altai State University, Barnaul, 2002
[11] R. M. Bryant, J. R. J. Groves, “Wreath products and ultraproducts of groups”, Quart. J. Math. Oxford, 29 (1978), 301–308 | DOI | MR | Zbl
[12] H. Neumann, Varietis of Groups, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR
[13] A. I. Malcev, Algebraic Systems, Springer-Verlag, 1973 | MR
[14] V. H. Mikaelian, “On finitely generated soluble non-Hopfian groups”, Journal of Mathematical Sciences, 166 (2010), 743–755 | DOI | MR | Zbl
[15] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, 2nd Ed., Wiley, New York; Dover, New York, 1976 | MR
[16] A. I. Budkin, V. A. Gorbunov, “Quasivarieties of algebraic systems”, Algebra and Logic, 14 (1975), 73–84 | DOI | MR
[17] H. Abels, “An example of a finitely presented solvable group”, London Math. Soc. Lecture Note Ser., 36 (1979), 205–211 | MR | Zbl
[18] A. I. Budkin, “Quasi-identities and direct wreath products of groups”, Algebra and Logic, 23:4 (1984), 253–264 | DOI | MR | Zbl