On groups which are not finitely defined in every quasivariety of groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 937-945

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to study quasivarieties of groups closed under direct Z-wreath products. We show that such quasivarieties contain finitely generated groups which are not finitely defined in every quasivariety of groups. We establish the existence of continuum many finitely generated groups every of which is not finitely defined in each quasivariety of groups. We construct the group which is finitely defined in the class of all torsion-free groups and is not finitely defined in the class of all groups.
Mots-clés : group
Keywords: finitely defined group, quasivariety, wreath product.
@article{SEMR_2017_14_a25,
     author = {A. I. Budkin},
     title = {On groups which are not finitely defined in every quasivariety of groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {937--945},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - On groups which are not finitely defined in every quasivariety of groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 937
EP  - 945
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/
LA  - ru
ID  - SEMR_2017_14_a25
ER  - 
%0 Journal Article
%A A. I. Budkin
%T On groups which are not finitely defined in every quasivariety of groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 937-945
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/
%G ru
%F SEMR_2017_14_a25
A. I. Budkin. On groups which are not finitely defined in every quasivariety of groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 937-945. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/