On groups which are not finitely defined in every quasivariety of groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 937-945.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue to study quasivarieties of groups closed under direct Z-wreath products. We show that such quasivarieties contain finitely generated groups which are not finitely defined in every quasivariety of groups. We establish the existence of continuum many finitely generated groups every of which is not finitely defined in each quasivariety of groups. We construct the group which is finitely defined in the class of all torsion-free groups and is not finitely defined in the class of all groups.
Mots-clés : group
Keywords: finitely defined group, quasivariety, wreath product.
@article{SEMR_2017_14_a25,
     author = {A. I. Budkin},
     title = {On groups which are not finitely defined in every quasivariety of groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {937--945},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - On groups which are not finitely defined in every quasivariety of groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 937
EP  - 945
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/
LA  - ru
ID  - SEMR_2017_14_a25
ER  - 
%0 Journal Article
%A A. I. Budkin
%T On groups which are not finitely defined in every quasivariety of groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 937-945
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/
%G ru
%F SEMR_2017_14_a25
A. I. Budkin. On groups which are not finitely defined in every quasivariety of groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 937-945. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a25/

[1] M. I. Kargapolov, J. I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979 | MR | Zbl

[2] C. R. Combrink, E. E. Dean, “$Z$-group wreath products”, Czechosl. Math. J., 33:1 (1983), 34–36 | MR | Zbl

[3] V. M. Kopytov, Lattice-ordered groups, Nauka, M., 1984 | MR | Zbl

[4] A. I. Budkin, “Quasivarieties of groups closed with respect to restricted wreath products”, Math. USSR-Sb., 49 (1984), 503–514 | DOI | Zbl

[5] A. I. Budkin, “Quasivarieties of groups closed under wreath products and wreath Z-products”, Algebra and Logic, 38 (1999), 137–143 | DOI | MR | Zbl

[6] B. H. Neumann, H. Neumann, “Embedding theorems for groups”, J. London Math. Soc., 34 (1959), 465–479 | DOI | MR | Zbl

[7] A. I. Budkin, “Q-theories of 2-generated groups with given axiomatic rank”, Algebra and Logic, 28 (1989), 341–348 | DOI | MR | Zbl

[8] V. D. Mazurov, E. I. Khukhro (eds.), Unsolved problems in group theory. The Kourovka Notebook, 18th edn, Sobolev Institute of Mathematics, Novosibirsk, 2014 | MR

[9] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, 1998 | MR | Zbl

[10] A. I. Budkin, Quasivarieties of groups, Altai State University, Barnaul, 2002

[11] R. M. Bryant, J. R. J. Groves, “Wreath products and ultraproducts of groups”, Quart. J. Math. Oxford, 29 (1978), 301–308 | DOI | MR | Zbl

[12] H. Neumann, Varietis of Groups, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR

[13] A. I. Malcev, Algebraic Systems, Springer-Verlag, 1973 | MR

[14] V. H. Mikaelian, “On finitely generated soluble non-Hopfian groups”, Journal of Mathematical Sciences, 166 (2010), 743–755 | DOI | MR | Zbl

[15] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, 2nd Ed., Wiley, New York; Dover, New York, 1976 | MR

[16] A. I. Budkin, V. A. Gorbunov, “Quasivarieties of algebraic systems”, Algebra and Logic, 14 (1975), 73–84 | DOI | MR

[17] H. Abels, “An example of a finitely presented solvable group”, London Math. Soc. Lecture Note Ser., 36 (1979), 205–211 | MR | Zbl

[18] A. I. Budkin, “Quasi-identities and direct wreath products of groups”, Algebra and Logic, 23:4 (1984), 253–264 | DOI | MR | Zbl