Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 856-863
Voir la notice de l'article provenant de la source Math-Net.Ru
A.A. Makhnev and M.S. Samoilenko found parameters of strongly regular graphs which can be local subgraphs
in antipodal distance-regular graph of diameter $3$ with $\lambda=\mu$. It is suggested the programm of
investigation antipodal distance-regular graph of diameter $3$ with $\lambda=\mu$ and local subgraphs having
this parameters. It is consider parameters $(64,21,8,6)$ in this paper. It is proved that
vertex-symmetric distance-regular graph with intersection array $\{64,42,1;1,21,64\}$ is arc-transitive
with the automorphism group having socle $L_2(64)$ or $U_3(4)$.
Keywords:
distance-regular graph
Mots-clés : automorphism.
Mots-clés : automorphism.
@article{SEMR_2017_14_a24,
author = {A. A. Makhnev and M. M. Isakova and A. A. Tokbaeva},
title = {Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {856--863},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/}
}
TY - JOUR
AU - A. A. Makhnev
AU - M. M. Isakova
AU - A. A. Tokbaeva
TI - Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2017
SP - 856
EP - 863
VL - 14
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/
LA - ru
ID - SEMR_2017_14_a24
ER -
%0 Journal Article
%A A. A. Makhnev
%A M. M. Isakova
%A A. A. Tokbaeva
%T Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 856-863
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/
%G ru
%F SEMR_2017_14_a24
A. A. Makhnev; M. M. Isakova; A. A. Tokbaeva. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 856-863. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/