Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a24, author = {A. A. Makhnev and M. M. Isakova and A. A. Tokbaeva}, title = {Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {856--863}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/} }
TY - JOUR AU - A. A. Makhnev AU - M. M. Isakova AU - A. A. Tokbaeva TI - Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 856 EP - 863 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/ LA - ru ID - SEMR_2017_14_a24 ER -
%0 Journal Article %A A. A. Makhnev %A M. M. Isakova %A A. A. Tokbaeva %T Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 856-863 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/ %G ru %F SEMR_2017_14_a24
A. A. Makhnev; M. M. Isakova; A. A. Tokbaeva. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 856-863. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/
[1] A. A. Makhnev, M. S. Samoylenko, “On distance-regular covers of cliques with strongly regular neighbourhoods of vertices”, Modern Problems in Mathematics and its Applications, Proceedings of the 46-th International Youth School-conference (Yekaterinburg, Russia, 2015), 13–17
[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[3] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81 (2010), 439–442 | DOI | MR | Zbl
[4] A. A. Makhnev, D. V. Paduchikh, L. Y. Tsiovkina, “Edge-symmetric distance-regular covers of cliques with $\lambda=\mu$”, Trudy IMM UrO RAN, 19, no. 2, 2013, 237–246 | MR
[5] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl
[6] R. Burkhardt, “Die Zerlegungsmatrizen der Gruppen $PSL(2,p^f)$”, J. Algebra, 40:1 (1976), 75–96 | DOI | MR | Zbl