Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 856-863.

Voir la notice de l'article provenant de la source Math-Net.Ru

A.A. Makhnev and M.S. Samoilenko found parameters of strongly regular graphs which can be local subgraphs in antipodal distance-regular graph of diameter $3$ with $\lambda=\mu$. It is suggested the programm of investigation antipodal distance-regular graph of diameter $3$ with $\lambda=\mu$ and local subgraphs having this parameters. It is consider parameters $(64,21,8,6)$ in this paper. It is proved that vertex-symmetric distance-regular graph with intersection array $\{64,42,1;1,21,64\}$ is arc-transitive with the automorphism group having socle $L_2(64)$ or $U_3(4)$.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2017_14_a24,
     author = {A. A. Makhnev and M. M. Isakova and A. A. Tokbaeva},
     title = {Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {856--863},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. M. Isakova
AU  - A. A. Tokbaeva
TI  - Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 856
EP  - 863
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/
LA  - ru
ID  - SEMR_2017_14_a24
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. M. Isakova
%A A. A. Tokbaeva
%T Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 856-863
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/
%G ru
%F SEMR_2017_14_a24
A. A. Makhnev; M. M. Isakova; A. A. Tokbaeva. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 856-863. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/

[1] A. A. Makhnev, M. S. Samoylenko, “On distance-regular covers of cliques with strongly regular neighbourhoods of vertices”, Modern Problems in Mathematics and its Applications, Proceedings of the 46-th International Youth School-conference (Yekaterinburg, Russia, 2015), 13–17

[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[3] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81 (2010), 439–442 | DOI | MR | Zbl

[4] A. A. Makhnev, D. V. Paduchikh, L. Y. Tsiovkina, “Edge-symmetric distance-regular covers of cliques with $\lambda=\mu$”, Trudy IMM UrO RAN, 19, no. 2, 2013, 237–246 | MR

[5] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl

[6] R. Burkhardt, “Die Zerlegungsmatrizen der Gruppen $PSL(2,p^f)$”, J. Algebra, 40:1 (1976), 75–96 | DOI | MR | Zbl