Mots-clés : automorphism.
@article{SEMR_2017_14_a24,
author = {A. A. Makhnev and M. M. Isakova and A. A. Tokbaeva},
title = {Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {856--863},
year = {2017},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/}
}
TY - JOUR
AU - A. A. Makhnev
AU - M. M. Isakova
AU - A. A. Tokbaeva
TI - Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2017
SP - 856
EP - 863
VL - 14
UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/
LA - ru
ID - SEMR_2017_14_a24
ER -
A. A. Makhnev; M. M. Isakova; A. A. Tokbaeva. Automorphisms of graph with intersection array $\{64,42,1;1,21,64\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 856-863. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a24/
[1] A. A. Makhnev, M. S. Samoylenko, “On distance-regular covers of cliques with strongly regular neighbourhoods of vertices”, Modern Problems in Mathematics and its Applications, Proceedings of the 46-th International Youth School-conference (Yekaterinburg, Russia, 2015), 13–17
[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[3] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81 (2010), 439–442 | DOI | MR | Zbl
[4] A. A. Makhnev, D. V. Paduchikh, L. Y. Tsiovkina, “Edge-symmetric distance-regular covers of cliques with $\lambda=\mu$”, Trudy IMM UrO RAN, 19, no. 2, 2013, 237–246 | MR
[5] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl
[6] R. Burkhardt, “Die Zerlegungsmatrizen der Gruppen $PSL(2,p^f)$”, J. Algebra, 40:1 (1976), 75–96 | DOI | MR | Zbl