Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a23, author = {N. Bazhenov and M. Mustafa and F. Stephan and M. Yamaleev}, title = {Boolean algebras realized by c.e. equivalence relations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {848--855}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a23/} }
TY - JOUR AU - N. Bazhenov AU - M. Mustafa AU - F. Stephan AU - M. Yamaleev TI - Boolean algebras realized by c.e. equivalence relations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 848 EP - 855 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a23/ LA - en ID - SEMR_2017_14_a23 ER -
N. Bazhenov; M. Mustafa; F. Stephan; M. Yamaleev. Boolean algebras realized by c.e. equivalence relations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 848-855. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a23/
[1] P. S. Novikov, “On the algorithmic unsolvability of the word problem in group theory”, Proceedings of the Steklov Institute of Mathematics, 44, 1955, 1–143 (In Russian) | MR
[2] E. Noether, “Idealtheorie in Ringbereichen”, Mathematische Annalen, 83:1–2 (1921), 24–66 | DOI | MR | Zbl
[3] W. Baur, “Rekursive Algebren mit Kettenbedingungen”, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 20 (1974), 37–46 | DOI | MR | Zbl
[4] A. Gavruskin, S. Jain, B. Khoussainov, F. Stephan, “Graphs realized by r.e. equivalence relations”, Ann. Pure Appl. Logic, 165:7–8 (2014), 1263–1290 | DOI | MR | Zbl
[5] E. Fokina, B. Khoussainov, P. Semukhin, D. Turetsky, “Linear orders realized by c.e. equivalence relations”, J. Symb. Logic, 81:2 (2016), 463–482 | DOI | MR | Zbl
[6] S. S. Goncharov, Countable Boolean algebras and decidability, Consultants Bureau, New York, 1997 | MR
[7] Yu. L. Ershov, Theory of numberings, Nauka, M., 1977 (In Russian) | MR
[8] S. Gao, P. Gerdes, “Computably enumerable equivalence relations”, Stud. Log., 67:1 (2001), 27–59 | DOI | MR | Zbl
[9] U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. San Mauro, A. Sorbi, “Universal computably enumerable equivalence relations”, J. Symb. Log., 79:1 (2014), 60–88 | DOI | MR | Zbl
[10] U. Andrews, S. Badaev, A. Sorbi, “A survey on universal computably enumerable equivalence relations”, Lect. Notes Comput. Sci., 10010, 2016, 418–451 | DOI | MR
[11] A. Gavryushkin, B. Khoussainov, F. Stephan, “Reducibilities among equivalence relations induced by recursively enumerable structures”, Theoret. Comput. Sci., 612 (2016), 137–152 | DOI | MR | Zbl
[12] L. Feiner, “Hierarchies of Boolean algebras”, J. Symb. Log., 35:3 (1970), 365–374 | DOI | MR
[13] S. P. Odintsov, V. L. Selivanov, “The arithmetical hierarchy and ideals of enumerated Boolean algebras”, Siberian Math. J., 30:6 (1990), 952–960 | DOI | MR
[14] S. A. Badaev, “On weakly precomplete positive equivalences”, Siberian Math. J., 32:2 (1991), 321–323 | DOI | MR | Zbl
[15] S. Badaev, A. Sorbi, “Weakly precomplete computably enumerable equivalence relations”, Math. Log. Q., 62:1–2 (2016), 111–127 | DOI | MR | Zbl
[16] R. I. Soare, Recursively enumerable sets and degrees, Springer, Berlin, 1987 | MR