On $\omega$-independent bases for quasi-identities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 838-847

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we continue the study of complexity of quasivariety lattices. We prove that there are continuum many quasivarieties of graphs, monounary algebras, digraphs, and pointed Abelian groups having an $\omega$-independet quasi-equational basis.
Keywords: quasivariety, quasi-equational basis, $\omega$-independent basis.
@article{SEMR_2017_14_a22,
     author = {A. Basheyeva and A. V. Yakovlev},
     title = {On $\omega$-independent bases for quasi-identities},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {838--847},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a22/}
}
TY  - JOUR
AU  - A. Basheyeva
AU  - A. V. Yakovlev
TI  - On $\omega$-independent bases for quasi-identities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 838
EP  - 847
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a22/
LA  - ru
ID  - SEMR_2017_14_a22
ER  - 
%0 Journal Article
%A A. Basheyeva
%A A. V. Yakovlev
%T On $\omega$-independent bases for quasi-identities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 838-847
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a22/
%G ru
%F SEMR_2017_14_a22
A. Basheyeva; A. V. Yakovlev. On $\omega$-independent bases for quasi-identities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 838-847. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a22/