On $\omega$-independent bases for quasi-identities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 838-847
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article, we continue the study of complexity of quasivariety lattices.
We prove that there are continuum many quasivarieties of graphs, monounary algebras, digraphs, and pointed Abelian groups having an $\omega$-independet quasi-equational basis.
Keywords:
quasivariety, quasi-equational basis, $\omega$-independent basis.
@article{SEMR_2017_14_a22,
author = {A. Basheyeva and A. V. Yakovlev},
title = {On $\omega$-independent bases for quasi-identities},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {838--847},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a22/}
}
A. Basheyeva; A. V. Yakovlev. On $\omega$-independent bases for quasi-identities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 838-847. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a22/