Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 807-820.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that adjoint Chevalley group of type $E_l$ over ring of integers is generated by three involutions. Two of these involutions are commute.
Keywords: Chevalley group, ring of integers, generation involutions.
@article{SEMR_2017_14_a21,
     author = {I. A. Timofeenko},
     title = {Generation of the {Chevalley} groups of type $E_l$ over the ring of integers by three involutions two of which commute},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {807--820},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/}
}
TY  - JOUR
AU  - I. A. Timofeenko
TI  - Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 807
EP  - 820
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/
LA  - ru
ID  - SEMR_2017_14_a21
ER  - 
%0 Journal Article
%A I. A. Timofeenko
%T Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 807-820
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/
%G ru
%F SEMR_2017_14_a21
I. A. Timofeenko. Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 807-820. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/

[1] Ya.N. Nuzhin, “Generating three involutions of Chevalley group over a finite field of characteristic 2”, Algebra i logika, 2 (1990), 192–206 (In Russian) | MR | Zbl

[2] Ya.N. Nuzhin, “Generating triples of involutions of the Lie type over a finite field of odd characteristic”, Algebra i logika, 36:1 (1997), 77–96 (In Russian) | DOI | MR | Zbl

[3] Ya.N. Nuzhin, “Generating triples of involutions of the groups of Lie type over a finite field of odd characteristic II”, Algebra i logika, 36:4 (1997), 422–440 (In Russian) | MR | Zbl

[4] I. A. Timofeenko, “Generation of the Chevalley group of type $G_2$ over the ring of integers by three involutions two of which commute”, Journal of Siberian Federal University. Mathematics and Physics, 8 (2015), 104–108 | DOI | MR

[5] The Kourovka Notebook. Unsolved problems in group theory, 18th edition, 2014 (In Russian)

[6] M.C. Tamburini, P. Zucca, “Generation of Certain Matrix Groups by Three Involutions, Two of Which Commute”, J. of Algebra, 195 (1997), 650–661 | DOI | MR | Zbl

[7] Ya.N. Nuzhin, “On Generation of Groups $PSL_n(\mathbb{Z})$ by Three Involutions, Two of Which Commute”, Vladikavkaz. Matemat. Zh., 10 (2008), 68–74 (In Russian) | MR | Zbl

[8] R.W. Carter, Simple Groups of Lie Type, John Wiley and Sons, 1972 | MR | Zbl

[9] R. Steinberg, “Generators for simple groups”, Canad. J. Math., 14 (1962), 277–283 | DOI | MR | Zbl

[10] N. Bourbaki, Lie Groups and Lie Algebras, Mir, M., 1978 (In Russian) | MR

[11] R. Steinberg, Lectures On Chevalley Groups, Mir, 1974 (In Russian) | MR