Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 807-820

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that adjoint Chevalley group of type $E_l$ over ring of integers is generated by three involutions. Two of these involutions are commute.
Keywords: Chevalley group, ring of integers, generation involutions.
@article{SEMR_2017_14_a21,
     author = {I. A. Timofeenko},
     title = {Generation of the {Chevalley} groups of type $E_l$ over the ring of integers by three involutions two of which commute},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {807--820},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/}
}
TY  - JOUR
AU  - I. A. Timofeenko
TI  - Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 807
EP  - 820
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/
LA  - ru
ID  - SEMR_2017_14_a21
ER  - 
%0 Journal Article
%A I. A. Timofeenko
%T Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 807-820
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/
%G ru
%F SEMR_2017_14_a21
I. A. Timofeenko. Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 807-820. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/