Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a21, author = {I. A. Timofeenko}, title = {Generation of the {Chevalley} groups of type $E_l$ over the ring of integers by three involutions two of which commute}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {807--820}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/} }
TY - JOUR AU - I. A. Timofeenko TI - Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 807 EP - 820 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/ LA - ru ID - SEMR_2017_14_a21 ER -
%0 Journal Article %A I. A. Timofeenko %T Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 807-820 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/ %G ru %F SEMR_2017_14_a21
I. A. Timofeenko. Generation of the Chevalley groups of type $E_l$ over the ring of integers by three involutions two of which commute. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 807-820. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a21/
[1] Ya.N. Nuzhin, “Generating three involutions of Chevalley group over a finite field of characteristic 2”, Algebra i logika, 2 (1990), 192–206 (In Russian) | MR | Zbl
[2] Ya.N. Nuzhin, “Generating triples of involutions of the Lie type over a finite field of odd characteristic”, Algebra i logika, 36:1 (1997), 77–96 (In Russian) | DOI | MR | Zbl
[3] Ya.N. Nuzhin, “Generating triples of involutions of the groups of Lie type over a finite field of odd characteristic II”, Algebra i logika, 36:4 (1997), 422–440 (In Russian) | MR | Zbl
[4] I. A. Timofeenko, “Generation of the Chevalley group of type $G_2$ over the ring of integers by three involutions two of which commute”, Journal of Siberian Federal University. Mathematics and Physics, 8 (2015), 104–108 | DOI | MR
[5] The Kourovka Notebook. Unsolved problems in group theory, 18th edition, 2014 (In Russian)
[6] M.C. Tamburini, P. Zucca, “Generation of Certain Matrix Groups by Three Involutions, Two of Which Commute”, J. of Algebra, 195 (1997), 650–661 | DOI | MR | Zbl
[7] Ya.N. Nuzhin, “On Generation of Groups $PSL_n(\mathbb{Z})$ by Three Involutions, Two of Which Commute”, Vladikavkaz. Matemat. Zh., 10 (2008), 68–74 (In Russian) | MR | Zbl
[8] R.W. Carter, Simple Groups of Lie Type, John Wiley and Sons, 1972 | MR | Zbl
[9] R. Steinberg, “Generators for simple groups”, Canad. J. Math., 14 (1962), 277–283 | DOI | MR | Zbl
[10] N. Bourbaki, Lie Groups and Lie Algebras, Mir, M., 1978 (In Russian) | MR
[11] R. Steinberg, Lectures On Chevalley Groups, Mir, 1974 (In Russian) | MR