Generic Kleene fixed point theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 732-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

Kleene's fixed point theorem states that any algorithmic mapping $\mathcal{A}$ of the set of Turing machines to the set of Turing machines has a fixed point: there is a Turing machine $M$ such that machine $\mathcal{A}(M)$ computes the same function as $M$. In this paper we prove a generic analog of this theorem: any algorithmic mapping $\mathcal{A}$ of a set of “almost all” Turing machines to the set of Turing machines has a fixed point.
Keywords: Kleene fixed point theorem, generic computability.
@article{SEMR_2017_14_a20,
     author = {A. N. Rybalov},
     title = {Generic {Kleene} fixed point theorem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {732--736},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a20/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - Generic Kleene fixed point theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 732
EP  - 736
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a20/
LA  - ru
ID  - SEMR_2017_14_a20
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T Generic Kleene fixed point theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 732-736
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a20/
%G ru
%F SEMR_2017_14_a20
A. N. Rybalov. Generic Kleene fixed point theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 732-736. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a20/

[1] N.J. Cutland, Computability: An introduction to recursive function theory, Cambridge University Press, 1980 | MR | Zbl

[2] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity, decision problems in group theory and random walks”, Journal of Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl

[3] S.C. Kleene, “On Notation for Ordinal Numbers”, Journal of Symbolic Logic, 3 (1938), 150–155 | DOI | Zbl

[4] S.C. Kleene, Introduction to Metamathematics, North-Holland, 1952 | MR | Zbl

[5] A.I. Maltsev, Algorithms and recursive functions, Wolters-Noordhoff, Groningen, 1970 | MR | Zbl

[6] A. Myasnikov, A. Rybalov, “Generic complexity of undecidable problems”, Journal of Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR | Zbl

[7] H. Rogers, Theory of Recursive Functions and Effective Computability, MIT Press, 1967 | MR

[8] A. Rybalov, “Generic incompletness of Formal Arithmetic”, Siberian electronic mathematical reports, 12 (2015), 185–189 | MR | Zbl

[9] Vereshchagin N., Shen A., Computable functions, Student mathematical library, 19, American Mathematical Society, 2003 | MR | Zbl