@article{SEMR_2017_14_a20,
author = {A. N. Rybalov},
title = {Generic {Kleene} fixed point theorem},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {732--736},
year = {2017},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a20/}
}
A. N. Rybalov. Generic Kleene fixed point theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 732-736. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a20/
[1] N.J. Cutland, Computability: An introduction to recursive function theory, Cambridge University Press, 1980 | MR | Zbl
[2] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity, decision problems in group theory and random walks”, Journal of Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[3] S.C. Kleene, “On Notation for Ordinal Numbers”, Journal of Symbolic Logic, 3 (1938), 150–155 | DOI | Zbl
[4] S.C. Kleene, Introduction to Metamathematics, North-Holland, 1952 | MR | Zbl
[5] A.I. Maltsev, Algorithms and recursive functions, Wolters-Noordhoff, Groningen, 1970 | MR | Zbl
[6] A. Myasnikov, A. Rybalov, “Generic complexity of undecidable problems”, Journal of Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR | Zbl
[7] H. Rogers, Theory of Recursive Functions and Effective Computability, MIT Press, 1967 | MR
[8] A. Rybalov, “Generic incompletness of Formal Arithmetic”, Siberian electronic mathematical reports, 12 (2015), 185–189 | MR | Zbl
[9] Vereshchagin N., Shen A., Computable functions, Student mathematical library, 19, American Mathematical Society, 2003 | MR | Zbl