On recurrence relation in the problem of enumeration of finite posets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 98-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the previous paper of the author the formula reduced the count of the number $T_0(n)$ of posets defined on $n$-set to the calculation of the numbers $W(p_1,\ldots,p_k)$ of posets of a special form has been proved ($p_1+\ldots+p_k=n$). In present paper we obtain the relations of recurrent nature connecting the individual values of $W(p_1,\ldots,p_k)$ among themselves. As a result of these relations the partially folded formula for the number $T_0(n)$ is obtained.
Keywords: graph enumeration, poset, finite topology.
@article{SEMR_2017_14_a2,
     author = {V. I. Rodionov},
     title = {On recurrence relation in the problem of enumeration of finite posets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {98--111},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a2/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On recurrence relation in the problem of enumeration of finite posets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 98
EP  - 111
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a2/
LA  - ru
ID  - SEMR_2017_14_a2
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On recurrence relation in the problem of enumeration of finite posets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 98-111
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a2/
%G ru
%F SEMR_2017_14_a2
V. I. Rodionov. On recurrence relation in the problem of enumeration of finite posets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 98-111. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a2/

[1] V. I. Rodionov, “On enumeration of posets defined on finite set”, Siberian Electr. Math. Reports, 13 (2016), 318–330 | MR | Zbl

[2] L. Comtet, “Recouvrements, bases de filtre et topologies d'un ensemble fini”, C. R. Acad. Sci., 262 (1966), A1091–A1094 | MR

[3] V. Krishnamurthy, “On the number of topologies on a finite set”, Amer. Math. Monthly, 73:2 (1966), 154–157 | DOI | MR | Zbl

[4] M. Erne, “Struktur- und anzahlformeln fur topologien auf endlichen mengen”, Manuscripta Math., 11 (1974), 221–259 | DOI | MR | Zbl

[5] Z. I. Borevich, “Enumeration of finite topologies”, J. Sov. Math., 20:6 (1982), 2532–2545 | DOI | MR | Zbl

[6] J. W. Evans, F. Harary, M. S. Lynn, “On the computer enumeration of finite topologies”, Comm. ACM, 10:5 (1967), 295–297 | DOI | Zbl

[7] S. K. Das, “A machine representation of finite $T_0$ topologies”, J. Assoc. Comput. Mach., 24:4 (1977), 676–692 | DOI | MR | Zbl

[8] Z. I. Borevich, W. Wieslaw, E. Dobrowolski, V. I. Rodionov, “The number of labeled topologies on nine points”, J. Sov. Math., 37:2 (1987), 937–942 | DOI | MR | Zbl

[9] Z. I. Borevich, V. V. Bumagin, V. I. Rodionov, “Number of labeled topologies on ten points”, J. Sov. Math., 17:4 (1981), 1941–1945 | DOI | MR | Zbl

[10] V. I. Rodionov, “Some recurrence relations in finite topologies”, J. Sov. Math., 27:4 (1984), 2963–2968 | DOI | MR | Zbl

[11] M. Erne, K. Stege, “Counting finite posets and topologies”, Order, 8:3 (1991), 247–265 | DOI | MR | Zbl

[12] G. Brinkmann, B. D. McKay, “Posets on up to 16 points”, Order, 19:2 (2002), 147–179 | DOI | MR | Zbl