On recurrence relation in the problem of enumeration of finite posets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 98-111

Voir la notice de l'article provenant de la source Math-Net.Ru

In the previous paper of the author the formula reduced the count of the number $T_0(n)$ of posets defined on $n$-set to the calculation of the numbers $W(p_1,\ldots,p_k)$ of posets of a special form has been proved ($p_1+\ldots+p_k=n$). In present paper we obtain the relations of recurrent nature connecting the individual values of $W(p_1,\ldots,p_k)$ among themselves. As a result of these relations the partially folded formula for the number $T_0(n)$ is obtained.
Keywords: graph enumeration, poset, finite topology.
@article{SEMR_2017_14_a2,
     author = {V. I. Rodionov},
     title = {On recurrence relation in the problem of enumeration of finite posets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {98--111},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a2/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On recurrence relation in the problem of enumeration of finite posets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 98
EP  - 111
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a2/
LA  - ru
ID  - SEMR_2017_14_a2
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On recurrence relation in the problem of enumeration of finite posets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 98-111
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a2/
%G ru
%F SEMR_2017_14_a2
V. I. Rodionov. On recurrence relation in the problem of enumeration of finite posets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 98-111. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a2/