Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a19, author = {Dino Rossegger}, title = {On functors enumerating structures}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {690--702}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a19/} }
Dino Rossegger. On functors enumerating structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 690-702. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a19/
[1] C. Ash, J. Knight, M. Manasse, T. Slaman, “Generic copies of countable structures”, Annals of Pure and Applied Logic, 42:3 (1989), 195–205 | DOI | MR | Zbl
[2] C. Ash, J. Knight, T. Slaman, “Relatively recursive expansions, II”, Fundamenta Mathematicae, 142:2 (1993), 147–161 | MR | Zbl
[3] W. Calvert, D. Cummins, J. Knight, S. Miller, “Comparing Classes of Finite Structures”, Algebra and Logic, 43:6 (2004), 374–392 | DOI | MR | Zbl
[4] J. Chisholm, “Effective model theory vs. recursive model theory”, Journal of Symbolic Logic, 55:3 (1990), 1168–1191 | DOI | MR | Zbl
[5] Yu. L. Ershov, Definability and Computability, Siberian School of Algebra and Logic, Springer-Verlag, 1996 | MR
[6] M. Harrison-Trainor, A.G. Melnikov, R. Miller, A. Montalbán, “Computable functors and effective interpretability”, Journal of Symbolic Logic, 82:1 (2017), 77–97 | DOI | MR | Zbl
[7] M. Harrison-Trainor, R. Miller, A. Montalbán, Borel Functors and Infinitary Interpretations, 2016, arXiv: 1606.07489
[8] D. R. Hirschfeldt, B. Khoussainov, R.A. Shore, A.M. Slinko, “Degree spectra and computable dimensions in algebraic structures”, Annals of Pure and Applied Logic, 115:1–3 (2002), 71–113 | DOI | MR | Zbl
[9] I. Sh. Kalimullin, “Relations between algorithmic reducibilities of algebraic systems”, Russian Mathematics, 53:6 (2009), 58–59 | DOI | MR | Zbl
[10] J. Knight, S. Miller, M. Vanden Boom, “Turing Computable Embeddings”, Journal of Symbolic Logic, 72:3 (2007), 901–918 | DOI | MR | Zbl
[11] R. Miller, B. Poonen, H. Schoutens, A. Shlapentokh, A computable functor from graphs to fields, 2015, arXiv: 1510.07322
[12] A. Montalbán, “Rice sequences of relations”, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370:1971 (2012), 3464–3487 | DOI | MR | Zbl
[13] A. Montalbán, “Computability theoretic classifications for classes of structures”, Proccedings of the ICM 2014, v. 2, 2014, 79–101
[14] A. S. Morozov, M. V. Korovina, “${\Sigma}$-definability of countable structures over real numbers, complex numbers, and quaternions”, Algebra and Logic, 47:3 (2008), 193–209 | DOI | MR | Zbl
[15] V. G. Puzarenko, “A certain reducibility on admissible sets”, Siberian Mathematical Journal, 50:2 (2009), 330–340 | DOI | MR | Zbl
[16] D. Rossegger, Computable Transformations of Classes of Structures, Master's thesis, Technische Universität Wien, 2015
[17] R. I. Soare, Turing Computability, Theory and Applications of Computability, Springer, Berlin–Heidelberg, 2016 | DOI | MR | Zbl
[18] A. Soskova, M. Soskova, “Enumeration Reducibility and Computable Structure Theory”, Computability and Complexity, Springer, 2017, 271–301 | DOI | Zbl
[19] A. I. Stukachev, “Degrees of presentability of structures, I”, Algebra and Logic, 46:6 (2007), 419–432 | DOI | MR | Zbl
[20] A. I. Stukachev, “Degrees of presentability of structures, II”, Algebra and Logic, 47:1 (2008), 65–74 | DOI | MR | Zbl
[21] A. I. Stukachev, “Effective model theory: An approach via $\Sigma$-definability”, Effective Mathematics of the Uncountable, Lecture Notes in Logic, 41, 2013, 164–197 | MR | Zbl