$\Omega$-Foliated Fitting classes of $T$-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 629-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define and construct several types of $\Omega$-foliated Fitting classes of multioperator $T$-groups with composition series and describe the structure of its minimal satellites.
Keywords: multioperator $T$-group, $\Omega$-foliated Fitting class
Mots-clés : satellite.
@article{SEMR_2017_14_a18,
     author = {E. N. Bazhanova and V. A. Vedernikov},
     title = {$\Omega${-Foliated} {Fitting} classes of $T$-groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {629--639},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a18/}
}
TY  - JOUR
AU  - E. N. Bazhanova
AU  - V. A. Vedernikov
TI  - $\Omega$-Foliated Fitting classes of $T$-groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 629
EP  - 639
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a18/
LA  - ru
ID  - SEMR_2017_14_a18
ER  - 
%0 Journal Article
%A E. N. Bazhanova
%A V. A. Vedernikov
%T $\Omega$-Foliated Fitting classes of $T$-groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 629-639
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a18/
%G ru
%F SEMR_2017_14_a18
E. N. Bazhanova; V. A. Vedernikov. $\Omega$-Foliated Fitting classes of $T$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 629-639. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a18/

[1] W. Gaschütz, “Zur Theorie der endlichen auflösbaren Gruppen”, Mathematische Zeitschrift, 80:4 (1963), 300–305 | MR | Zbl

[2] B. Hartley, “On Fischer's dualization of formation theory”, Proceedings of the London Mathematical Society, 3:19 (1969), 193–207 | DOI | MR | Zbl

[3] L.A. Shemetkov, “Graduated formations of groups”, Mathematics of the USSR-Sbornik, 23:4 (1974), 593–611 | DOI | MR

[4] L.A. Shemetkov, Formations of Finite Groups, Nauka, M., 1978 | MR | Zbl

[5] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, M., 1989 | MR | Zbl

[6] K. Doerk, T. Nawkes, Finite soluble groups, Walter de Gruyter, Berlin–New Jork, 1992 | MR

[7] A.N. Skiba, Algebra of Formations, Belarusskaya Nauka, Minsk, 1997 | MR | Zbl

[8] A.N. Skiba, L. A. Shemetkov, “On the minimal composition screen of a composition formation”, Voprosy Algebry, 7 (1992), 39–43 | MR | Zbl

[9] A.N. Skiba, L. A. Shemetkov, “Partially composition formations of finite groups”, Doclady of the national academy of science of Belarus, 43:4 (1999), 5–8 | MR | Zbl

[10] A.N. Skiba, L. A. Shemetkov, “Multiply $\omega$-local formations and Fitting classes of finite groups”, Siberian Advances in Mathematics, 10:2 (2000), 112–141 | MR | Zbl

[11] V.A. Vedernikov, M. M. Sorokina, “$\Omega$-Foliated formations and Fitting classes of finite groups”, Discrete Mathematics and Applications, 11:5 (2001), 507–527 | DOI | MR | Zbl

[12] M.M. Sorokina, “On minimal satellites of multiply $\Omega$-foliated Fitting classes and formations of finite groups”, Proc. 70th Ann. Bryansk State Pedagogical Univ., Bryansk State Pedagogical University, Bryansk, 2000, 199–203

[13] V.A. Vedernikov, “Maximal satellites of $\Omega$-foliated formations and Fitting classes”, Proceedings of the Steklov Institute of Mathematics, 2 (2001), 217–233 | MR

[14] V.A. Vedernikov, M. M. Sorokina, “$\omega$-Fibered formations and Fitting classes of finite groups”, Mathematical Notes, 71:1 (2002), 39–55 | DOI | MR | Zbl

[15] V.A. Vedernikov, “On new types of $\omega$-fibered formations of finite groups”, Ukrainian Mathematical Congress-2001, Proceedings. Section 1: Algebra and Number Theory (Kiev, Ukraine, August 21–23, 2001), Inst. Mat., Kiev, 2002, 36–45 | MR | Zbl

[16] V.A. Vedernikov, “On new types of $\omega$-fibered Fitting classes of finite groups”, Ukrainian Mathematical Journal, 54:7 (2002), 897–906 | DOI | MR | Zbl

[17] V.A. Vedernikov, “$\Omega$-Foliated formations and Fitting classes with finite composition series”, Ukrainian Mathematical Congress-2001, Proceedings. Section 1: Algebra and Number Theory (Kiev, Ukraine, August 21–23, 2001), Inst. Mat., Kiev, 2002, 16–17

[18] V.A. Vedernikov, E. N. Demina, “$\Omega$-Foliated formations of multioperator $T$-groups”, Siberian Mathematical Journal, 51:5 (2010), 789–804 | DOI | MR | Zbl

[19] V.A. Vedernikov, E. N. Demina, “$\Omega$-Foliated formations and Fitting classes of $T$-groups”, Algebra and Its Applications, Proceedings of the International Conference on the Occasion of the 80 years of the Birth of A.I. Kostrikin, Kabardino-Balkarsk. Univ., Nalchik, 2009, 26–29

[20] V.A. Vedernikov, “Foliated Fitting classes of multioperator $T$-groups”, Innovative technologies of teaching physics and mathematics disciplines: Proceedings of the International scientific-practical internet-conference on the Occasion of the 60 years of N.T. Vorob'ev, Vitebsk St. Univ., Vitebsk, 2011, 16–18

[21] P.J. Higgins, “Groups with multiple operators”, Proceedings of the London Mathematical Society, 6:3 (1956), 366–416 | DOI | MR | Zbl

[22] A.G. Kurosh, Lectures on General Algebra, Fizmatgiz, M., 1962 | MR

[23] L.A. Skornyakov (ed.), General Algebra, v. 2, Nauka, M., 1991 | MR | Zbl