$\Omega$-Foliated Fitting classes of $T$-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 629-639

Voir la notice de l'article provenant de la source Math-Net.Ru

We define and construct several types of $\Omega$-foliated Fitting classes of multioperator $T$-groups with composition series and describe the structure of its minimal satellites.
Keywords: multioperator $T$-group, $\Omega$-foliated Fitting class
Mots-clés : satellite.
@article{SEMR_2017_14_a18,
     author = {E. N. Bazhanova and V. A. Vedernikov},
     title = {$\Omega${-Foliated} {Fitting} classes of $T$-groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {629--639},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a18/}
}
TY  - JOUR
AU  - E. N. Bazhanova
AU  - V. A. Vedernikov
TI  - $\Omega$-Foliated Fitting classes of $T$-groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 629
EP  - 639
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a18/
LA  - ru
ID  - SEMR_2017_14_a18
ER  - 
%0 Journal Article
%A E. N. Bazhanova
%A V. A. Vedernikov
%T $\Omega$-Foliated Fitting classes of $T$-groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 629-639
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a18/
%G ru
%F SEMR_2017_14_a18
E. N. Bazhanova; V. A. Vedernikov. $\Omega$-Foliated Fitting classes of $T$-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 629-639. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a18/