Some classical number sequences in control system design
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 620-628 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algebraic tools of LTI control systems design need graphical and analytical structures which depend on dimension of their control parameter space. Essential elements for optimal low-order control systems are the least stable system poles, i.e. the rightmost on the complex plane characteristic roots. Their mutual location is described by critical root diagrams; the algebraic design procedure uses the root polynomials, i.e. factors of characteristic polynomials, which involve only the rightmost poles. From a theoretical point of view it is important to know the dependence between control space dimension and numbers of arising object sets and their asymptotics; they are represented by Fibonacci numbers and partial sums of Euler partitions. From a practical design point of view we need complete lists of required diagrams and polynomials; so we specify the recursive procedure to build a root polynomial list for each control parameter dimension.
Keywords: LTI control systems, system pole, relative stability, Hurwitz function, critical root diagram, root polynomial, Fibonacci numbers
Mots-clés : Euler partitions.
@article{SEMR_2017_14_a17,
     author = {A. V. Chekhonadskikh},
     title = {Some classical number sequences in control system design},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {620--628},
     year = {2017},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/}
}
TY  - JOUR
AU  - A. V. Chekhonadskikh
TI  - Some classical number sequences in control system design
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 620
EP  - 628
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/
LA  - en
ID  - SEMR_2017_14_a17
ER  - 
%0 Journal Article
%A A. V. Chekhonadskikh
%T Some classical number sequences in control system design
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 620-628
%V 14
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/
%G en
%F SEMR_2017_14_a17
A. V. Chekhonadskikh. Some classical number sequences in control system design. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 620-628. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/

[1] C.-T. Chen, Linear System Theory and Design, Holt, Rinehart and Winstone, New York, 1984

[2] M. Kano, M. Ogawa, “The State of the Art in Chemical Process Control in Japan: Good Practice and Questionnaire Survey”, J. Process Control, 20:9 (2010), 969–982 | DOI

[3] K.J. Åström, T. Hägglund, PID-controllers: Theory, design and tuning, Instrument Society of America, Research Triangle Park, NC, 1995

[4] B.T. Polyak, P.S. Shcherbakov, “Hard Problems in Linear Control Theory: Possible Approaches to Solution”, Automation and Remote Control, 66:5 (2005), 681–718 | DOI | MR | Zbl

[5] J.J. D'Azzo, C.H. Houpis, S.N. Sheldon, Linear Control System Analysis and Design with Matlab, Marcel Dekker, Inc., New York–Basel, 2003 | Zbl

[6] Y.I. Neumark, The stability of linearized systems, LKVVIA, L., 1949

[7] B.T. Polyak, E.N. Gryazina, “Stability domain in the parameter space: D-decomposition revisited”, Automatica, 42 (2006), 13–26 | DOI | MR | Zbl

[8] A.V. Chekhonadskikh, “Extremal Pole Placement in Control Systems with a Low Order Controller”, Automation and Remote Control, 75:10 (2014), 1717–1731 | DOI | MR | Zbl

[9] A.V. Voevoda, A.V. Chekhonadskikh, “Overcoming nondifferentiability in optimization synthesis of automatic control systems”, Optoelectronics, Instrumentation and Data Processing, 46:5 (2010), 408–413 | DOI

[10] A.V. Shekhonadskih, “Critical root zones and reduction of simplex graphs of real polynomials”, Algebra and model theory 7, Coll. of papers, NGTU publ., Novosibirsk, 2009, 26–43

[11] A.M. Shubladze, “Stability-Optimal One-Dimensional Control Systems. I”, Automation and Remote Control, 62:4 (2001), 557–567 | DOI | MR | Zbl

[12] A.M. Shubladze, “Stability-Optimal One-Dimensional Control Systems. II”, Automation and Remote Control, 62:5 (2001), 735–745 | DOI | MR | Zbl

[13] T.I. Cherepova, A.M. Shubladze, “Stability-Optimal Control Systems for Plants with “Unstable” Numerator of the Transfer Function”, Automation and Remote Control, 65:9 (2004), 1377–1388 | DOI | MR | Zbl

[14] http://oeis.org/A036469

[15] A.V. Chekhonadskih, “Root coordinates in the design of SISO control systems”, Optoelectronics, Instrumentation and Data Processing, 51:5 (2015), 485–495 | DOI

[16] A.V. Chekhonadskikh, A.A. Voevoda, “Algebraic design method of low order control systems”, Proc. of International Siberian conference on control and communications, SIBCON–2015 (Omsk, 21–23 May, 2015), IEEE, Omsk, 2015, 268–272