Some classical number sequences in control system design
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 620-628

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic tools of LTI control systems design need graphical and analytical structures which depend on dimension of their control parameter space. Essential elements for optimal low-order control systems are the least stable system poles, i.e. the rightmost on the complex plane characteristic roots. Their mutual location is described by critical root diagrams; the algebraic design procedure uses the root polynomials, i.e. factors of characteristic polynomials, which involve only the rightmost poles. From a theoretical point of view it is important to know the dependence between control space dimension and numbers of arising object sets and their asymptotics; they are represented by Fibonacci numbers and partial sums of Euler partitions. From a practical design point of view we need complete lists of required diagrams and polynomials; so we specify the recursive procedure to build a root polynomial list for each control parameter dimension.
Keywords: LTI control systems, system pole, relative stability, Hurwitz function, critical root diagram, root polynomial, Fibonacci numbers
Mots-clés : Euler partitions.
@article{SEMR_2017_14_a17,
     author = {A. V. Chekhonadskikh},
     title = {Some classical number sequences in control system design},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {620--628},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/}
}
TY  - JOUR
AU  - A. V. Chekhonadskikh
TI  - Some classical number sequences in control system design
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 620
EP  - 628
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/
LA  - en
ID  - SEMR_2017_14_a17
ER  - 
%0 Journal Article
%A A. V. Chekhonadskikh
%T Some classical number sequences in control system design
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 620-628
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/
%G en
%F SEMR_2017_14_a17
A. V. Chekhonadskikh. Some classical number sequences in control system design. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 620-628. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/