Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a17, author = {A. V. Chekhonadskikh}, title = {Some classical number sequences in control system design}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {620--628}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/} }
A. V. Chekhonadskikh. Some classical number sequences in control system design. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 620-628. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/
[1] C.-T. Chen, Linear System Theory and Design, Holt, Rinehart and Winstone, New York, 1984
[2] M. Kano, M. Ogawa, “The State of the Art in Chemical Process Control in Japan: Good Practice and Questionnaire Survey”, J. Process Control, 20:9 (2010), 969–982 | DOI
[3] K.J. Åström, T. Hägglund, PID-controllers: Theory, design and tuning, Instrument Society of America, Research Triangle Park, NC, 1995
[4] B.T. Polyak, P.S. Shcherbakov, “Hard Problems in Linear Control Theory: Possible Approaches to Solution”, Automation and Remote Control, 66:5 (2005), 681–718 | DOI | MR | Zbl
[5] J.J. D'Azzo, C.H. Houpis, S.N. Sheldon, Linear Control System Analysis and Design with Matlab, Marcel Dekker, Inc., New York–Basel, 2003 | Zbl
[6] Y.I. Neumark, The stability of linearized systems, LKVVIA, L., 1949
[7] B.T. Polyak, E.N. Gryazina, “Stability domain in the parameter space: D-decomposition revisited”, Automatica, 42 (2006), 13–26 | DOI | MR | Zbl
[8] A.V. Chekhonadskikh, “Extremal Pole Placement in Control Systems with a Low Order Controller”, Automation and Remote Control, 75:10 (2014), 1717–1731 | DOI | MR | Zbl
[9] A.V. Voevoda, A.V. Chekhonadskikh, “Overcoming nondifferentiability in optimization synthesis of automatic control systems”, Optoelectronics, Instrumentation and Data Processing, 46:5 (2010), 408–413 | DOI
[10] A.V. Shekhonadskih, “Critical root zones and reduction of simplex graphs of real polynomials”, Algebra and model theory 7, Coll. of papers, NGTU publ., Novosibirsk, 2009, 26–43
[11] A.M. Shubladze, “Stability-Optimal One-Dimensional Control Systems. I”, Automation and Remote Control, 62:4 (2001), 557–567 | DOI | MR | Zbl
[12] A.M. Shubladze, “Stability-Optimal One-Dimensional Control Systems. II”, Automation and Remote Control, 62:5 (2001), 735–745 | DOI | MR | Zbl
[13] T.I. Cherepova, A.M. Shubladze, “Stability-Optimal Control Systems for Plants with “Unstable” Numerator of the Transfer Function”, Automation and Remote Control, 65:9 (2004), 1377–1388 | DOI | MR | Zbl
[15] A.V. Chekhonadskih, “Root coordinates in the design of SISO control systems”, Optoelectronics, Instrumentation and Data Processing, 51:5 (2015), 485–495 | DOI
[16] A.V. Chekhonadskikh, A.A. Voevoda, “Algebraic design method of low order control systems”, Proc. of International Siberian conference on control and communications, SIBCON–2015 (Omsk, 21–23 May, 2015), IEEE, Omsk, 2015, 268–272