Some classical number sequences in control system design
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 620-628.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic tools of LTI control systems design need graphical and analytical structures which depend on dimension of their control parameter space. Essential elements for optimal low-order control systems are the least stable system poles, i.e. the rightmost on the complex plane characteristic roots. Their mutual location is described by critical root diagrams; the algebraic design procedure uses the root polynomials, i.e. factors of characteristic polynomials, which involve only the rightmost poles. From a theoretical point of view it is important to know the dependence between control space dimension and numbers of arising object sets and their asymptotics; they are represented by Fibonacci numbers and partial sums of Euler partitions. From a practical design point of view we need complete lists of required diagrams and polynomials; so we specify the recursive procedure to build a root polynomial list for each control parameter dimension.
Keywords: LTI control systems, system pole, relative stability, Hurwitz function, critical root diagram, root polynomial, Fibonacci numbers
Mots-clés : Euler partitions.
@article{SEMR_2017_14_a17,
     author = {A. V. Chekhonadskikh},
     title = {Some classical number sequences in control system design},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {620--628},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/}
}
TY  - JOUR
AU  - A. V. Chekhonadskikh
TI  - Some classical number sequences in control system design
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 620
EP  - 628
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/
LA  - en
ID  - SEMR_2017_14_a17
ER  - 
%0 Journal Article
%A A. V. Chekhonadskikh
%T Some classical number sequences in control system design
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 620-628
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/
%G en
%F SEMR_2017_14_a17
A. V. Chekhonadskikh. Some classical number sequences in control system design. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 620-628. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a17/

[1] C.-T. Chen, Linear System Theory and Design, Holt, Rinehart and Winstone, New York, 1984

[2] M. Kano, M. Ogawa, “The State of the Art in Chemical Process Control in Japan: Good Practice and Questionnaire Survey”, J. Process Control, 20:9 (2010), 969–982 | DOI

[3] K.J. Åström, T. Hägglund, PID-controllers: Theory, design and tuning, Instrument Society of America, Research Triangle Park, NC, 1995

[4] B.T. Polyak, P.S. Shcherbakov, “Hard Problems in Linear Control Theory: Possible Approaches to Solution”, Automation and Remote Control, 66:5 (2005), 681–718 | DOI | MR | Zbl

[5] J.J. D'Azzo, C.H. Houpis, S.N. Sheldon, Linear Control System Analysis and Design with Matlab, Marcel Dekker, Inc., New York–Basel, 2003 | Zbl

[6] Y.I. Neumark, The stability of linearized systems, LKVVIA, L., 1949

[7] B.T. Polyak, E.N. Gryazina, “Stability domain in the parameter space: D-decomposition revisited”, Automatica, 42 (2006), 13–26 | DOI | MR | Zbl

[8] A.V. Chekhonadskikh, “Extremal Pole Placement in Control Systems with a Low Order Controller”, Automation and Remote Control, 75:10 (2014), 1717–1731 | DOI | MR | Zbl

[9] A.V. Voevoda, A.V. Chekhonadskikh, “Overcoming nondifferentiability in optimization synthesis of automatic control systems”, Optoelectronics, Instrumentation and Data Processing, 46:5 (2010), 408–413 | DOI

[10] A.V. Shekhonadskih, “Critical root zones and reduction of simplex graphs of real polynomials”, Algebra and model theory 7, Coll. of papers, NGTU publ., Novosibirsk, 2009, 26–43

[11] A.M. Shubladze, “Stability-Optimal One-Dimensional Control Systems. I”, Automation and Remote Control, 62:4 (2001), 557–567 | DOI | MR | Zbl

[12] A.M. Shubladze, “Stability-Optimal One-Dimensional Control Systems. II”, Automation and Remote Control, 62:5 (2001), 735–745 | DOI | MR | Zbl

[13] T.I. Cherepova, A.M. Shubladze, “Stability-Optimal Control Systems for Plants with “Unstable” Numerator of the Transfer Function”, Automation and Remote Control, 65:9 (2004), 1377–1388 | DOI | MR | Zbl

[14] http://oeis.org/A036469

[15] A.V. Chekhonadskih, “Root coordinates in the design of SISO control systems”, Optoelectronics, Instrumentation and Data Processing, 51:5 (2015), 485–495 | DOI

[16] A.V. Chekhonadskikh, A.A. Voevoda, “Algebraic design method of low order control systems”, Proc. of International Siberian conference on control and communications, SIBCON–2015 (Omsk, 21–23 May, 2015), IEEE, Omsk, 2015, 268–272