On unit group of a finite local rings with 4-nilpotent radical of Jacobson
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 552-567
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the structure of the unit group of a commutative finite local rings $R$ of characteristic $p$
with Jacobson radical $J$ such that ${\dim_F J/J^2=2}$, ${\dim_F J^2/J^3=2}$, ${\dim_F J^3=1}$, $J^4=(0)$ and $F=R/J\cong GF(p^r)$, the finite field of $p^r$ elements.
Keywords:
local rings, finite rings, unit group of a ring.
@article{SEMR_2017_14_a15,
author = {E. V. Zhuravlev},
title = {On unit group of a finite local rings with 4-nilpotent radical of {Jacobson}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {552--567},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a15/}
}
TY - JOUR AU - E. V. Zhuravlev TI - On unit group of a finite local rings with 4-nilpotent radical of Jacobson JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 552 EP - 567 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a15/ LA - ru ID - SEMR_2017_14_a15 ER -
E. V. Zhuravlev. On unit group of a finite local rings with 4-nilpotent radical of Jacobson. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 552-567. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a15/