On weakly commutative triples of partial differential operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1050-1063.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate algebraic properties of weakly commutative triples, appearing in the theory of integrable nonlinear partial differential equations. Algebraic technique of skew fields of formal pseudodifferential operators as well as skew Ore fields of fractions are applied to this problem, relating weakly commutative triples to commuting elements of skew Ore fields of formal fractions of ordinary differential operators. A version of Burchnall–Chaundy theorem for weakly commutative triples is proved by algebraic means avoiding analytical complications typical for its proofs known in the theory of integrable equations.
Keywords: integrable systems, skew fields, formal pseudodifferential operators, Ore extensions.
@article{SEMR_2017_14_a123,
     author = {S. P. Tsarev and V. A. Stepanenko},
     title = {On weakly commutative triples of partial differential operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1050--1063},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/}
}
TY  - JOUR
AU  - S. P. Tsarev
AU  - V. A. Stepanenko
TI  - On weakly commutative triples of partial differential operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1050
EP  - 1063
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/
LA  - ru
ID  - SEMR_2017_14_a123
ER  - 
%0 Journal Article
%A S. P. Tsarev
%A V. A. Stepanenko
%T On weakly commutative triples of partial differential operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1050-1063
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/
%G ru
%F SEMR_2017_14_a123
S. P. Tsarev; V. A. Stepanenko. On weakly commutative triples of partial differential operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1050-1063. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/

[1] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Soc., Ser. 2, 21 (1923), 420–440 | DOI | MR | Zbl

[2] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Soviet Math. Dokl., 17 (1976), 947–952 | MR

[3] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl

[4] I. A. Taimanov, S. P. Tsarev, “The Moutard transformation: an algebraic formalism via pseudodifferential operators and applications”, OCAMI (Osaka City University Advanced Mathematical Institute) Study Series, 3 (2010), 169–183 | MR | Zbl

[5] O. Ore, “Linear equations in non-commutative fields”, Ann. of Math., 32:3 (1931), 463–477 | DOI | MR

[6] I. Schur, “Über vertauschbare lineare Differentialausdrücke”, Sitzungsber. Berliner Math. Gesellschaft, 4 (1904), 2–8

[7] P. M. Cohn, Skew Fields. Theory of General Division Rings, Encyclopedia of Mathematics and its Applications, 57, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[8] K. R. Goodearl, “Centralizers in differential, pseudo-differential, and fractional differential operator rings”, Rocky Mountain Journal of Mathematics, 13:4 (1983), 573–618 | DOI | MR | Zbl

[9] J. Richter, S. D. Silvestrov, “Computing Burchnall-Chaundy Polynomials with Determinants”, Engineering Mathematics II, Springer Proceedings in Mathematics Statistics, 179, eds. Silvestrov S., Ranćić M., Springer, 2016, 57–64 | DOI | MR

[10] K. T. Whittaker, G. N. Watson, A course of modern analysis, 4 ed., CUP, 1950 | MR