On weakly commutative triples of partial differential operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1050-1063
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate algebraic properties of weakly commutative triples, appearing in
the theory of integrable nonlinear partial differential equations.
Algebraic technique of skew fields of formal pseudodifferential
operators as well as skew Ore fields of fractions are applied to this problem, relating weakly commutative
triples to commuting elements of skew Ore fields of formal fractions of ordinary differential operators.
A version of Burchnall–Chaundy theorem for weakly commutative triples is proved by algebraic means avoiding
analytical complications typical
for its proofs known in the theory of integrable equations.
Keywords:
integrable systems, skew fields, formal pseudodifferential operators, Ore extensions.
@article{SEMR_2017_14_a123,
author = {S. P. Tsarev and V. A. Stepanenko},
title = {On weakly commutative triples of partial differential operators},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1050--1063},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/}
}
TY - JOUR AU - S. P. Tsarev AU - V. A. Stepanenko TI - On weakly commutative triples of partial differential operators JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1050 EP - 1063 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/ LA - ru ID - SEMR_2017_14_a123 ER -
S. P. Tsarev; V. A. Stepanenko. On weakly commutative triples of partial differential operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1050-1063. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/