On weakly commutative triples of partial differential operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1050-1063

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate algebraic properties of weakly commutative triples, appearing in the theory of integrable nonlinear partial differential equations. Algebraic technique of skew fields of formal pseudodifferential operators as well as skew Ore fields of fractions are applied to this problem, relating weakly commutative triples to commuting elements of skew Ore fields of formal fractions of ordinary differential operators. A version of Burchnall–Chaundy theorem for weakly commutative triples is proved by algebraic means avoiding analytical complications typical for its proofs known in the theory of integrable equations.
Keywords: integrable systems, skew fields, formal pseudodifferential operators, Ore extensions.
@article{SEMR_2017_14_a123,
     author = {S. P. Tsarev and V. A. Stepanenko},
     title = {On weakly commutative triples of partial differential operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1050--1063},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/}
}
TY  - JOUR
AU  - S. P. Tsarev
AU  - V. A. Stepanenko
TI  - On weakly commutative triples of partial differential operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1050
EP  - 1063
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/
LA  - ru
ID  - SEMR_2017_14_a123
ER  - 
%0 Journal Article
%A S. P. Tsarev
%A V. A. Stepanenko
%T On weakly commutative triples of partial differential operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1050-1063
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/
%G ru
%F SEMR_2017_14_a123
S. P. Tsarev; V. A. Stepanenko. On weakly commutative triples of partial differential operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1050-1063. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/