Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a123, author = {S. P. Tsarev and V. A. Stepanenko}, title = {On weakly commutative triples of partial differential operators}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1050--1063}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/} }
TY - JOUR AU - S. P. Tsarev AU - V. A. Stepanenko TI - On weakly commutative triples of partial differential operators JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1050 EP - 1063 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/ LA - ru ID - SEMR_2017_14_a123 ER -
S. P. Tsarev; V. A. Stepanenko. On weakly commutative triples of partial differential operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1050-1063. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a123/
[1] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Soc., Ser. 2, 21 (1923), 420–440 | DOI | MR | Zbl
[2] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Soviet Math. Dokl., 17 (1976), 947–952 | MR
[3] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl
[4] I. A. Taimanov, S. P. Tsarev, “The Moutard transformation: an algebraic formalism via pseudodifferential operators and applications”, OCAMI (Osaka City University Advanced Mathematical Institute) Study Series, 3 (2010), 169–183 | MR | Zbl
[5] O. Ore, “Linear equations in non-commutative fields”, Ann. of Math., 32:3 (1931), 463–477 | DOI | MR
[6] I. Schur, “Über vertauschbare lineare Differentialausdrücke”, Sitzungsber. Berliner Math. Gesellschaft, 4 (1904), 2–8
[7] P. M. Cohn, Skew Fields. Theory of General Division Rings, Encyclopedia of Mathematics and its Applications, 57, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[8] K. R. Goodearl, “Centralizers in differential, pseudo-differential, and fractional differential operator rings”, Rocky Mountain Journal of Mathematics, 13:4 (1983), 573–618 | DOI | MR | Zbl
[9] J. Richter, S. D. Silvestrov, “Computing Burchnall-Chaundy Polynomials with Determinants”, Engineering Mathematics II, Springer Proceedings in Mathematics Statistics, 179, eds. Silvestrov S., Ranćić M., Springer, 2016, 57–64 | DOI | MR
[10] K. T. Whittaker, G. N. Watson, A course of modern analysis, 4 ed., CUP, 1950 | MR