Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 765-773

Voir la notice de l'article provenant de la source Math-Net.Ru

We get some estimates for interior of arbitrary $(q_1,q_2)$-quasimetric ball. We prove theorem of regularization of $(q_1,q_2)$-quasimetric that generalizes corresponding results of R. Alvarado and M. Mitrea. We introduce a notion of $\underline{\lim}$-weak symmetric $(q_1,q_2)$-quasimetric space and prove that every $\underline{\lim}$-weak symmetric $(q_1,q_2)$-quasimetric space satisfies $T_3$-axiom.
Keywords: distance function, open set, interior of $(q_1,q_2)$-quasimetric ball, $\underline{\lim}$-weak symmetry, separation axioms, regularization of a $(q_1,q_2)$-quasimetric.
Mots-clés : $(q_1,q_2)$-quasimetric
@article{SEMR_2017_14_a120,
     author = {A. V. Greshnov},
     title = {Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {765--773},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 765
EP  - 773
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/
LA  - ru
ID  - SEMR_2017_14_a120
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 765-773
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/
%G ru
%F SEMR_2017_14_a120
A. V. Greshnov. Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 765-773. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/