Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 765-773.

Voir la notice de l'article provenant de la source Math-Net.Ru

We get some estimates for interior of arbitrary $(q_1,q_2)$-quasimetric ball. We prove theorem of regularization of $(q_1,q_2)$-quasimetric that generalizes corresponding results of R. Alvarado and M. Mitrea. We introduce a notion of $\underline{\lim}$-weak symmetric $(q_1,q_2)$-quasimetric space and prove that every $\underline{\lim}$-weak symmetric $(q_1,q_2)$-quasimetric space satisfies $T_3$-axiom.
Keywords: distance function, open set, interior of $(q_1,q_2)$-quasimetric ball, $\underline{\lim}$-weak symmetry, separation axioms, regularization of a $(q_1,q_2)$-quasimetric.
Mots-clés : $(q_1,q_2)$-quasimetric
@article{SEMR_2017_14_a120,
     author = {A. V. Greshnov},
     title = {Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {765--773},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 765
EP  - 773
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/
LA  - ru
ID  - SEMR_2017_14_a120
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 765-773
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/
%G ru
%F SEMR_2017_14_a120
A. V. Greshnov. Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 765-773. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/

[1] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storojuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Top. Appl., 221 (2017), 178–194 | DOI | MR

[2] W. A. Wilson, “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 | DOI | MR

[3] A. V. Arutyunov, A. V. Greshnov, “The theory of $(q_1; q_2)$-quasimetric spaces and coincidence points”, Doklady AN, 469:5 (2016), 527–531 | DOI | MR | Zbl

[4] A. V. Arutyunov, A. V. Greshnov, “Theory of $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izv. Ross. Akad. Nauk Ser. Mat., 2017 (to appear) | MR

[5] A. V. Greshnov, M. V. Tryamkin, “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:3–4 (2015), 694–698 | DOI | MR | Zbl

[6] E. M. Stein, Harmonic analysis: real-variables methods, orthogonality and oscillatory integrals, Princeton Univ. Press, 1993 | MR

[7] R. Alvarado, M. Mitrea, Hardy spaces on Ahlfors-Regular quasi metric spaces. A sharp Theory, Lect. Notes in Math., 2142, Springer, Cham, 2015 | DOI | MR | Zbl

[8] R. A. Masías, C. Segovia, “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33 (1970), 257–270 | MR

[9] G. Hu, D. Yang, Y. Zhou, “Boundness of singular integrals in Hardy spaces on space of homogeneous type”, Taiwanese Journ. of Math., 13:1 (2009), 91–135 | DOI | MR | Zbl

[10] H. Aimar, L. Forzani, R. Toledano, “Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge-Ampére equation”, Fourier Anal. Appl., 4:4–5 (1998), 377–381 | DOI | MR | Zbl