Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a120, author = {A. V. Greshnov}, title = {Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {765--773}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/} }
TY - JOUR AU - A. V. Greshnov TI - Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 765 EP - 773 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/ LA - ru ID - SEMR_2017_14_a120 ER -
A. V. Greshnov. Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 765-773. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/
[1] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storojuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Top. Appl., 221 (2017), 178–194 | DOI | MR
[2] W. A. Wilson, “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 | DOI | MR
[3] A. V. Arutyunov, A. V. Greshnov, “The theory of $(q_1; q_2)$-quasimetric spaces and coincidence points”, Doklady AN, 469:5 (2016), 527–531 | DOI | MR | Zbl
[4] A. V. Arutyunov, A. V. Greshnov, “Theory of $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izv. Ross. Akad. Nauk Ser. Mat., 2017 (to appear) | MR
[5] A. V. Greshnov, M. V. Tryamkin, “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:3–4 (2015), 694–698 | DOI | MR | Zbl
[6] E. M. Stein, Harmonic analysis: real-variables methods, orthogonality and oscillatory integrals, Princeton Univ. Press, 1993 | MR
[7] R. Alvarado, M. Mitrea, Hardy spaces on Ahlfors-Regular quasi metric spaces. A sharp Theory, Lect. Notes in Math., 2142, Springer, Cham, 2015 | DOI | MR | Zbl
[8] R. A. Masías, C. Segovia, “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33 (1970), 257–270 | MR
[9] G. Hu, D. Yang, Y. Zhou, “Boundness of singular integrals in Hardy spaces on space of homogeneous type”, Taiwanese Journ. of Math., 13:1 (2009), 91–135 | DOI | MR | Zbl
[10] H. Aimar, L. Forzani, R. Toledano, “Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge-Ampére equation”, Fourier Anal. Appl., 4:4–5 (1998), 377–381 | DOI | MR | Zbl