Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 765-773
Voir la notice de l'article provenant de la source Math-Net.Ru
We get some estimates for interior of arbitrary $(q_1,q_2)$-quasimetric ball. We prove theorem of regularization of $(q_1,q_2)$-quasimetric that generalizes corresponding results of R. Alvarado and M. Mitrea. We introduce a notion of $\underline{\lim}$-weak symmetric $(q_1,q_2)$-quasimetric space and prove that every $\underline{\lim}$-weak symmetric $(q_1,q_2)$-quasimetric space satisfies $T_3$-axiom.
Keywords:
distance function, open set, interior of $(q_1,q_2)$-quasimetric ball, $\underline{\lim}$-weak symmetry, separation axioms, regularization of a $(q_1,q_2)$-quasimetric.
Mots-clés : $(q_1,q_2)$-quasimetric
Mots-clés : $(q_1,q_2)$-quasimetric
@article{SEMR_2017_14_a120,
author = {A. V. Greshnov},
title = {Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {765--773},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/}
}
TY - JOUR AU - A. V. Greshnov TI - Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 765 EP - 773 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/ LA - ru ID - SEMR_2017_14_a120 ER -
A. V. Greshnov. Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 765-773. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a120/