Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a12, author = {M. V. Korovina and O. V. Kudinov}, title = {On images of partial computable functions over computable {Polish~spaces}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {418--432}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a12/} }
TY - JOUR AU - M. V. Korovina AU - O. V. Kudinov TI - On images of partial computable functions over computable Polish~spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 418 EP - 432 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a12/ LA - en ID - SEMR_2017_14_a12 ER -
M. V. Korovina; O. V. Kudinov. On images of partial computable functions over computable Polish~spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 418-432. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a12/
[1] Becher V., Heiber P., Slaman T. A., “Normal numbers and the Borel hierarchy”, Fundamenta Mathematicae, 226:1 (2014), 63–78 | DOI | MR
[2] Brattka V., Gherardi G., “Borel Complexity of Topological Operations on Computable Metric Spaces”, J. Log. Comput., 19:1 (2009), 45–76 | DOI | MR | Zbl
[3] Grubba T., Weihrauch K., “On Computable Metrization”, Electr. Notes Theor. Comput. Sci., 167 (2007), 345–364 | DOI | MR | Zbl
[4] Kechris A. S., Classical Descriptive set theory, Springer-Verlag, New York, 1995 | MR | Zbl
[5] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Dover Publications, 1999 | MR
[6] Korovina M. V., Kudinov O. V., “Complexity for partial computable functions over computable Polish spaces”, Mathematical structure in Computer Science, 2016 (Published online: 19 December 2016) | DOI
[7] Korovina M. V., Kudinov O. V., “Computable Elements and Functions in Effectively Enumerable Topological spaces”, Mathematical structure in Computer Science, 2016 (Published online: 23 June 2016) | DOI
[8] Korovina M. V., Kudinov O. V., “Index sets as a measure of continuous constraints complexity”, Lecture Notes in Computer Science, 8974, 2015, 201–215 | DOI | MR | Zbl
[9] Korovina M. V., Kudinov O. V., “Towards Computability over Effectively Enumerable Topological Spaces”, Electr. Notes Theor. Comput. Sci., 221 (2008), 115–125 | DOI | MR | Zbl
[10] Korovina M. V., Kudinov O. V., “Towards computability of higher type continuous data”, Proc. CiE'05, Lecture Notes in Computer Science, 3526, 2005, 235–241 | DOI | Zbl
[11] Montalban A., Nies A., “Borel structures: a brief survey”, Lecture Notes in Logic, 41, 2013, 124–134 | MR | Zbl
[12] Moschovakis Y. N., Descriptive set theory, North-Holland, Amsterdam, 2009 | MR
[13] Moschovakis Y. N., “Recursive metric spaces”, Fund. Math., 55 (1964), 215–238 | MR | Zbl
[14] Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967 | MR | Zbl
[15] Soare R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Springer Science and Business Media, 1987 | MR
[16] Spreen D., “On Effective Topological Spaces”, J. Symb. Log., 63:1 (1998), 185–221 | DOI | MR | Zbl
[17] Selivanov V., “Towards the Effective Descriptive Set Theory”, Lecture Notes in Computer Science, 9136, 2015, 324–333 | DOI | MR | Zbl
[18] Selivanov V., Schr{ö}der M., “Hyperprojective Hierarchy of $qcb_0$-Space”, J. Computability, 4:1 (2014), 1–17 | MR
[19] Weihrauch K., Computable Analysis, Springer Verlag, 2000 | MR | Zbl
[20] Weihrauch K., “Computability on Computable Metric Spaces”, Theor. Comput. Sci., 113:1 (1993), 191–210 | DOI | MR | Zbl