Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 647-656.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems on the conditions for the spherical Riesz potential type operator to be bounded in the generalized Hölder spaces are considered to develop results for the spatial case. Due to applying stereographic projection, theorems on boundedness of the variable order multidimensional potential type operator in the generalized variable Hölder spaces are proven.
Mots-clés : fractional calculus
Keywords: variable order, generalized Hölder space, Riesz potential.
@article{SEMR_2017_14_a117,
     author = {B. G. Vakulov and Yu. E. Drobotov},
     title = {Variable order {Riesz} potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable {H\"older} spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {647--656},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/}
}
TY  - JOUR
AU  - B. G. Vakulov
AU  - Yu. E. Drobotov
TI  - Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 647
EP  - 656
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/
LA  - ru
ID  - SEMR_2017_14_a117
ER  - 
%0 Journal Article
%A B. G. Vakulov
%A Yu. E. Drobotov
%T Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 647-656
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/
%G ru
%F SEMR_2017_14_a117
B. G. Vakulov; Yu. E. Drobotov. Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 647-656. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/

[1] R. Almeida, A.B. Malinowska, D.F.M. Torres, “A fractional calculus of variations for multiple integrals with application to vibrating string”, J. Math. Phys., 51:3 (2010), 033503 | DOI | MR | Zbl

[2] N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, “Discrete-time fractional variational problems”, Signal Process, 91 (2010), 513–524 | DOI

[3] C.F.M. Coimbra, “Mechanics with variable-order differential operators”, Ann. Phys., 12:11–12 (2003), 692–703 | DOI | MR | Zbl

[4] A.S. Dzhafarov, “Nailuchshee priblizhenie konechnymi sfericheskimi summami i nekotorye differencial'nye svojstva garmonicheskih v share funkcij”, Teoremy vlozhenija i ih prilozhenija, M., 1966, 75–81

[5] A.S. Dzhafarov, “Konstruktivnoe opisanie obobshhennyh klassov Besova na mnogomernoj sfere”, DAN SSSR, 285:3 (1985), 542–546 | MR | Zbl

[6] A.I. Ginsburg, N.K. Karapetyants, “Drobnoe integrodifferencirovanie v gel'derovskih klassah peremennogo porjadka”, Doklady RAN, 339:4 (1994), 439–441

[7] A.D. Gadzhiev, H.P. Rustamov, “Jekvivalentnaja normirovka v prostranstvah Besova na sfere i svojstva simvola mnogomernogo singuljarnogo integrala”, Izv. vuzov, Matemat., 1984, no. 9, 69–71 | MR | Zbl

[8] J. Garcia-Cuerva, A.E. Gatto, “Boundedness properties of fractional integral operators associated to non-doubling measures”, Studia Math., 162:3 (2004), 245–261 | DOI | MR | Zbl

[9] A.E. Gatto, C. Segovia, S. Vagi, “On fractional differentiation on spaces of gomogeneous type”, Revista Mat. Iberoamer., 12:1 (1996), 1–35 | MR

[10] N.K. Karapetyants, A.I. Ginsburg, “Fractional integrodifferentiation in Holder classes of arbitrary order”, Georg. Math. Journal, 2:2 (1995), 141–150 | DOI | MR | Zbl

[11] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[12] M. Klimek, “Fractional sequential mechanics-models with symmetric fractional derivative”, Czechoslovak J. Phys., 51:12 (2001), 1348–1354 | DOI | MR | Zbl

[13] A.G. Kurosh, A.I. Markushevich, P.K. Rashevskij (eds.), Matematika v SSSR za 30 let (1917–1947), M.–L., 1948, 183–228

[14] S.G. Mihlin, Mnogomernye singuljarnye integraly i integral'nye uravnenija, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoj literatury, M., 1962 | MR

[15] S.M. Nikolsky, P. I. Lizorkin, “Priblizhenie spericheskimi polinomami”, Tr. MIAN SSSR, 166, M., 1984, 186–200 | MR

[16] T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, “Fractional variational calculus of variable order”, Advances in Harmonic Analysis and Operator Theory, The Stefan Samko Anniversary Volume, Springer Basel, Basel, 2013, 291–301 | DOI | MR

[17] I.V. Petrova, “Teorema Dzheksona i prostranstva Besova na sfere”, DAN SSSR, 276:3 (1984), 544–549 | MR

[18] B. Ross, S.G. Samko, “Fractional integration operator of a variable order in the Hölder spaces $H^{\lambda (x)}$”, Internat. J. Math. Math. Sci., 18:4 (1995), 777–788 | DOI | MR | Zbl

[19] H. P. Rustamov, O tochnosti gladkostnyh svojstv simvola mnogomernogo singuljarnogo operatora s nepreryvnoj harakteristikoj, Deponirovanie v VINITI, No 5014-81 Dep., Baku, 1981

[20] N. Samko, B. Vakulov, “On generalized spherical fractional integration operators in weighted generalized Hölder spaces on the unit sphere”, Operator Theory: Advances and Applications, 181 (2008), 429–437 | DOI | MR | Zbl

[21] N. Samko, B. Vakulov, “Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic”, Math. Nachr., 284:2–3 (2011), 355–369 | DOI | MR | Zbl

[22] S.G. Samko, “Obobshhennye rissovy potencialy i gipersinguljarnye integraly s odnorodnymi harakteristikami, ih simvoly i obrashhenie”, Trudy MIAN SSSR, 156, 1980, 157–222 | MR | Zbl

[23] S.G. Samko, B. Ross, “Integration and differentiation to a variable fractional order”, Integral Transform. Spec. Funct., 1:4 (1993), 277–300 | DOI | MR | Zbl

[24] S.G. Samko, “Fractional integration and differentiation of variable order”, Anal. Math., 21:3 (1995), 213–236 | DOI | MR | Zbl

[25] S.G. Samko, “Differentiation and integration of variable order and the spaces $L^{p(x)}$”, Contemporary Mathematics, 212 (1998), 203–219 | DOI | MR | Zbl

[26] S.G. Samko, B.G. Vakulov, “On equivalent norms in fractional order function spaces of continuous functions on the unit sphere”, Fract. Calc. Appl. Anal., 3:4 (2000), 401–433 | MR | Zbl

[27] L.D. Shankishvili, Operatory tipa sfericheskogo potenciala kompleksnogo porjadka v obobshhjonnyh prostranstvah Gjol'dera, Deponirovanie v VINITI 23.03.98, No 860-V98

[28] B.G. Vakulov, “Operator tipa potenciala na sfere v obobshhennyh klassah Gjol'dera”, Izv. vuzov. Matem., 1986, no. 11, 66–69 | MR | Zbl

[29] B. G. Vakulov, S. G. Samko, “Ob jekvivalentnyh normirovkah v prostranstvah funkcij drobnoj gladkosti na sfere tipa $C^\lambda (\mathbb{S}_{n-1})$, $H^\lambda (\mathbb{S}_{n-1})$”, Izv. vuzov. Matem., 1987, no. 12, 68–71 | MR | Zbl

[30] B.G. Vakulov, “O dejstvii operatora rissova potenciala kompleksnogo porjadka po $\mathbb{R}^n$ v vesovyh prostranstvah Gjol'dera”, Izvestija vuzov. Severo-Kavkazskij region. Estestvennye nauki, 4 (2001), 47–49 | MR | Zbl

[31] B.G. Vakulov, N.K. Karapetjanc, L.D. Shankishvili, “Operatory sfericheskoj svertki so stepenno-logarifmicheskim jadrom v obobshhennyh prostranstvah Gjol'dera”, Izv. vuzov. Matem., 2003, no. 2, 3–14 | MR | Zbl

[32] B.G. Vakulov, N.K. Karapetjanc, “Operatory tipa potenciala na sfere s osobennostjami na poljusah”, Doklady Akademii nauk, 392:2 (2003), 151–154 | MR | Zbl

[33] B.G. Vakulov, “Sfericheskie operatory tipa potenciala v vesovyh prostranstvah Gjol'dera peremennogo porjadka”, Vladikavkazskij matematicheskij zhurnal, 7:2 (2005), 26–40 | MR | Zbl

[34] B.G. Vakulov, E.S. Kochurov, “Operatory drobnogo integrirovanija i differencirovanija peremennogo porjadka v prostranstvah Gjol'dera $H^{\omega (x, t)}$”, Vladikavkazskij matematicheskij zhurnal, 12:4 (2010), 3–11 | MR | Zbl

[35] B.G. Vakulov, E.S. Kochurov, “Ocenki tipa Zigmunda dlja operatorov drobnogo integrirovanija i differencirovanija peremennogo porjadka”, Izv. vuzov. Sev. Kavk. region. Estestv. nauki, 2011, Specvypusk, 15–17

[36] B.G. Vakulov, E.S. Kochurov, N.G. Samko, “Ocenki tipa Zigmunda dlja operatorov drobnogo integrirovanija i differencirovanija peremennogo porjadka”, Izv. vuzov. Matematika, 2011, no. 6, 25–34 | MR | Zbl

[37] M. Werens, “Best Approximation on the Unit Spere in $\mathbb{R}^k$”, Func. Anal. and Approxim., Proc. Conf. (Oberwolfach., Aug. 9–16, 1980), Basel c. a., 1981, 233–245 | MR