Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 647-656

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems on the conditions for the spherical Riesz potential type operator to be bounded in the generalized Hölder spaces are considered to develop results for the spatial case. Due to applying stereographic projection, theorems on boundedness of the variable order multidimensional potential type operator in the generalized variable Hölder spaces are proven.
Mots-clés : fractional calculus
Keywords: variable order, generalized Hölder space, Riesz potential.
@article{SEMR_2017_14_a117,
     author = {B. G. Vakulov and Yu. E. Drobotov},
     title = {Variable order {Riesz} potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable {H\"older} spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {647--656},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/}
}
TY  - JOUR
AU  - B. G. Vakulov
AU  - Yu. E. Drobotov
TI  - Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 647
EP  - 656
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/
LA  - ru
ID  - SEMR_2017_14_a117
ER  - 
%0 Journal Article
%A B. G. Vakulov
%A Yu. E. Drobotov
%T Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 647-656
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/
%G ru
%F SEMR_2017_14_a117
B. G. Vakulov; Yu. E. Drobotov. Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 647-656. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/