Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a117, author = {B. G. Vakulov and Yu. E. Drobotov}, title = {Variable order {Riesz} potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable {H\"older} spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {647--656}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/} }
TY - JOUR AU - B. G. Vakulov AU - Yu. E. Drobotov TI - Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 647 EP - 656 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/ LA - ru ID - SEMR_2017_14_a117 ER -
%0 Journal Article %A B. G. Vakulov %A Yu. E. Drobotov %T Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 647-656 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/ %G ru %F SEMR_2017_14_a117
B. G. Vakulov; Yu. E. Drobotov. Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable H\"older spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 647-656. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a117/
[1] R. Almeida, A.B. Malinowska, D.F.M. Torres, “A fractional calculus of variations for multiple integrals with application to vibrating string”, J. Math. Phys., 51:3 (2010), 033503 | DOI | MR | Zbl
[2] N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, “Discrete-time fractional variational problems”, Signal Process, 91 (2010), 513–524 | DOI
[3] C.F.M. Coimbra, “Mechanics with variable-order differential operators”, Ann. Phys., 12:11–12 (2003), 692–703 | DOI | MR | Zbl
[4] A.S. Dzhafarov, “Nailuchshee priblizhenie konechnymi sfericheskimi summami i nekotorye differencial'nye svojstva garmonicheskih v share funkcij”, Teoremy vlozhenija i ih prilozhenija, M., 1966, 75–81
[5] A.S. Dzhafarov, “Konstruktivnoe opisanie obobshhennyh klassov Besova na mnogomernoj sfere”, DAN SSSR, 285:3 (1985), 542–546 | MR | Zbl
[6] A.I. Ginsburg, N.K. Karapetyants, “Drobnoe integrodifferencirovanie v gel'derovskih klassah peremennogo porjadka”, Doklady RAN, 339:4 (1994), 439–441
[7] A.D. Gadzhiev, H.P. Rustamov, “Jekvivalentnaja normirovka v prostranstvah Besova na sfere i svojstva simvola mnogomernogo singuljarnogo integrala”, Izv. vuzov, Matemat., 1984, no. 9, 69–71 | MR | Zbl
[8] J. Garcia-Cuerva, A.E. Gatto, “Boundedness properties of fractional integral operators associated to non-doubling measures”, Studia Math., 162:3 (2004), 245–261 | DOI | MR | Zbl
[9] A.E. Gatto, C. Segovia, S. Vagi, “On fractional differentiation on spaces of gomogeneous type”, Revista Mat. Iberoamer., 12:1 (1996), 1–35 | MR
[10] N.K. Karapetyants, A.I. Ginsburg, “Fractional integrodifferentiation in Holder classes of arbitrary order”, Georg. Math. Journal, 2:2 (1995), 141–150 | DOI | MR | Zbl
[11] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR | Zbl
[12] M. Klimek, “Fractional sequential mechanics-models with symmetric fractional derivative”, Czechoslovak J. Phys., 51:12 (2001), 1348–1354 | DOI | MR | Zbl
[13] A.G. Kurosh, A.I. Markushevich, P.K. Rashevskij (eds.), Matematika v SSSR za 30 let (1917–1947), M.–L., 1948, 183–228
[14] S.G. Mihlin, Mnogomernye singuljarnye integraly i integral'nye uravnenija, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoj literatury, M., 1962 | MR
[15] S.M. Nikolsky, P. I. Lizorkin, “Priblizhenie spericheskimi polinomami”, Tr. MIAN SSSR, 166, M., 1984, 186–200 | MR
[16] T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, “Fractional variational calculus of variable order”, Advances in Harmonic Analysis and Operator Theory, The Stefan Samko Anniversary Volume, Springer Basel, Basel, 2013, 291–301 | DOI | MR
[17] I.V. Petrova, “Teorema Dzheksona i prostranstva Besova na sfere”, DAN SSSR, 276:3 (1984), 544–549 | MR
[18] B. Ross, S.G. Samko, “Fractional integration operator of a variable order in the Hölder spaces $H^{\lambda (x)}$”, Internat. J. Math. Math. Sci., 18:4 (1995), 777–788 | DOI | MR | Zbl
[19] H. P. Rustamov, O tochnosti gladkostnyh svojstv simvola mnogomernogo singuljarnogo operatora s nepreryvnoj harakteristikoj, Deponirovanie v VINITI, No 5014-81 Dep., Baku, 1981
[20] N. Samko, B. Vakulov, “On generalized spherical fractional integration operators in weighted generalized Hölder spaces on the unit sphere”, Operator Theory: Advances and Applications, 181 (2008), 429–437 | DOI | MR | Zbl
[21] N. Samko, B. Vakulov, “Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic”, Math. Nachr., 284:2–3 (2011), 355–369 | DOI | MR | Zbl
[22] S.G. Samko, “Obobshhennye rissovy potencialy i gipersinguljarnye integraly s odnorodnymi harakteristikami, ih simvoly i obrashhenie”, Trudy MIAN SSSR, 156, 1980, 157–222 | MR | Zbl
[23] S.G. Samko, B. Ross, “Integration and differentiation to a variable fractional order”, Integral Transform. Spec. Funct., 1:4 (1993), 277–300 | DOI | MR | Zbl
[24] S.G. Samko, “Fractional integration and differentiation of variable order”, Anal. Math., 21:3 (1995), 213–236 | DOI | MR | Zbl
[25] S.G. Samko, “Differentiation and integration of variable order and the spaces $L^{p(x)}$”, Contemporary Mathematics, 212 (1998), 203–219 | DOI | MR | Zbl
[26] S.G. Samko, B.G. Vakulov, “On equivalent norms in fractional order function spaces of continuous functions on the unit sphere”, Fract. Calc. Appl. Anal., 3:4 (2000), 401–433 | MR | Zbl
[27] L.D. Shankishvili, Operatory tipa sfericheskogo potenciala kompleksnogo porjadka v obobshhjonnyh prostranstvah Gjol'dera, Deponirovanie v VINITI 23.03.98, No 860-V98
[28] B.G. Vakulov, “Operator tipa potenciala na sfere v obobshhennyh klassah Gjol'dera”, Izv. vuzov. Matem., 1986, no. 11, 66–69 | MR | Zbl
[29] B. G. Vakulov, S. G. Samko, “Ob jekvivalentnyh normirovkah v prostranstvah funkcij drobnoj gladkosti na sfere tipa $C^\lambda (\mathbb{S}_{n-1})$, $H^\lambda (\mathbb{S}_{n-1})$”, Izv. vuzov. Matem., 1987, no. 12, 68–71 | MR | Zbl
[30] B.G. Vakulov, “O dejstvii operatora rissova potenciala kompleksnogo porjadka po $\mathbb{R}^n$ v vesovyh prostranstvah Gjol'dera”, Izvestija vuzov. Severo-Kavkazskij region. Estestvennye nauki, 4 (2001), 47–49 | MR | Zbl
[31] B.G. Vakulov, N.K. Karapetjanc, L.D. Shankishvili, “Operatory sfericheskoj svertki so stepenno-logarifmicheskim jadrom v obobshhennyh prostranstvah Gjol'dera”, Izv. vuzov. Matem., 2003, no. 2, 3–14 | MR | Zbl
[32] B.G. Vakulov, N.K. Karapetjanc, “Operatory tipa potenciala na sfere s osobennostjami na poljusah”, Doklady Akademii nauk, 392:2 (2003), 151–154 | MR | Zbl
[33] B.G. Vakulov, “Sfericheskie operatory tipa potenciala v vesovyh prostranstvah Gjol'dera peremennogo porjadka”, Vladikavkazskij matematicheskij zhurnal, 7:2 (2005), 26–40 | MR | Zbl
[34] B.G. Vakulov, E.S. Kochurov, “Operatory drobnogo integrirovanija i differencirovanija peremennogo porjadka v prostranstvah Gjol'dera $H^{\omega (x, t)}$”, Vladikavkazskij matematicheskij zhurnal, 12:4 (2010), 3–11 | MR | Zbl
[35] B.G. Vakulov, E.S. Kochurov, “Ocenki tipa Zigmunda dlja operatorov drobnogo integrirovanija i differencirovanija peremennogo porjadka”, Izv. vuzov. Sev. Kavk. region. Estestv. nauki, 2011, Specvypusk, 15–17
[36] B.G. Vakulov, E.S. Kochurov, N.G. Samko, “Ocenki tipa Zigmunda dlja operatorov drobnogo integrirovanija i differencirovanija peremennogo porjadka”, Izv. vuzov. Matematika, 2011, no. 6, 25–34 | MR | Zbl
[37] M. Werens, “Best Approximation on the Unit Spere in $\mathbb{R}^k$”, Func. Anal. and Approxim., Proc. Conf. (Oberwolfach., Aug. 9–16, 1980), Basel c. a., 1981, 233–245 | MR