Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a116, author = {V. V. Karachik}, title = {Integral identities on a sphere for normal derivatives of polyharmonic functions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {533--551}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a116/} }
TY - JOUR AU - V. V. Karachik TI - Integral identities on a sphere for normal derivatives of polyharmonic functions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 533 EP - 551 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a116/ LA - ru ID - SEMR_2017_14_a116 ER -
V. V. Karachik. Integral identities on a sphere for normal derivatives of polyharmonic functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 533-551. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a116/
[1] V.V. Karachik, “On the mean value property for polyharmonic functions in the ball”, Siberian Advances in Mathematics, 24:3 (2014), 169–182 | DOI | MR
[2] I.I. Bavrin, “Operatory dlya garmonicheskih funkcij i ih prilozheniya”, Differencial'nye uravneniya, 21:1 (1985), 9–15 | MR | Zbl
[3] V.V. Karachik, “A problem for the polyharmonic equation in the sphere”, Siberian Mathematical Journal, 32:5 (1991), 767–774 | DOI | MR | Zbl
[4] B.D. Koshanov, A.P. Soldatov, “Boundary value problem with normal derivatives for a higher-order elliptic equation on the plane”, Differential Equations, 52:12 (2016), 1594–1609 | DOI | MR | Zbl
[5] R. Dalmasso, “On the mean-value property of polyharmonic functions”, Studia Sci. Math. Hungar., 47:1 (2010), 113–117 | MR | Zbl
[6] V.V. Karachik, “On the mean-value property for polyharmonic functions”, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 6:3 (2013), 59–66 | Zbl
[7] K.O. Besov, “On the boundary behavior of components of polyharmonic functions”, Math. Notes, 64:4 (1998), 450–460 | DOI | MR | Zbl
[8] V.V. Karachik, “On some special polynomials and functions”, Siberian Electronic Mathematical Reports, 10 (2013), 205–226 | MR | Zbl
[9] V.V. Karachik, “Construction of polynomial solutions to some boundary value problems for Poisson's equation”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1567–1587 | DOI | MR
[10] V.V. Karachik, “On some special polynomials”, Proceedings of the American Mathematical Society, 132:4 (2004), 1049–1058 | DOI | MR | Zbl
[11] V.V. Karachik, “$P$-Latin matrices and Pascal's triangle modulo a prime”, Fibonacci Quarterly, 34:4 (1996), 362–372 | MR | Zbl
[12] V.V. Karachik, “Solvability conditions for the Neumann problem for the homogeneous polyharmonic equation”, Differential Equations, 50:11 (2014), 1449–1456 | DOI | MR | Zbl
[13] V.V. Karachik, “On the arithmetic triangle arising from the solvability conditions for the Neumann problem”, Mathematical Notes, 96:1–2 (2014), 217–227 | DOI | MR | Zbl
[14] A.V. Bizadze, “O nekotoryh svojstvah poligarmonicheskih funkcij”, Differencial'nye uravneniya, 24:5 (1988), 825–831 | MR
[15] V.V. Karachik, “On solvability conditions for the Neumann problem for a polyharmonic equation in the unit ball”, Journal of Applied and Industrial Mathematics, 8:1 (2014), 63–75 | DOI | MR
[16] F. Gazzola, G. Sweers, H.-Ch. Grunau, Polyharmonic boundary value problems, Lecture Notes Math., 1991, Springer, 2010 | DOI | MR | Zbl
[17] G.C. Verchota, “The biharmonic Neumann problem in Lipschitz domains”, Acta Math., 194 (2005), 217–279 | DOI | MR | Zbl
[18] V.V. Karachik, “Construction of polynomial solutions to the Dirichlet problem for the polyharmonic equation in a ball”, Computational Mathematics and Mathematical Physics, 54:7 (2014), 1122–1143 | DOI | MR | Zbl
[19] B. Turmetov, R. Ashurov, “On Solvability of the Neumann Boundary Value Problem for Non-homogeneous Biharmonic Equation”, British Journal of Mathematics $\$ Computer Science, 4:4 (2014), 557–571 | DOI
[20] V.V. Karachik, “A Neumann-type problem for the biharmonic equation”, Siberian Advances in Mathematics, 27:2 (2017), 103–118 | DOI | MR