Integral identities on a sphere for normal derivatives of polyharmonic functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 533-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

Identities for the integrals over the unit sphere of the products of linear combinations of normal derivatives of polyharmonic function in the unit ball and homogeneous harmonic polynomials are obtained. Basing on these identities the necessary conditions for the values on the unit sphere of polynomials on normal derivatives of polyharmonic functions are derived. Illustrative examples are given.
Keywords: polyharmonic functions, higher order normal derivatives, integral identities on the sphere.
@article{SEMR_2017_14_a116,
     author = {V. V. Karachik},
     title = {Integral identities on a sphere for normal derivatives of polyharmonic functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {533--551},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a116/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - Integral identities on a sphere for normal derivatives of polyharmonic functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 533
EP  - 551
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a116/
LA  - ru
ID  - SEMR_2017_14_a116
ER  - 
%0 Journal Article
%A V. V. Karachik
%T Integral identities on a sphere for normal derivatives of polyharmonic functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 533-551
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a116/
%G ru
%F SEMR_2017_14_a116
V. V. Karachik. Integral identities on a sphere for normal derivatives of polyharmonic functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 533-551. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a116/

[1] V.V. Karachik, “On the mean value property for polyharmonic functions in the ball”, Siberian Advances in Mathematics, 24:3 (2014), 169–182 | DOI | MR

[2] I.I. Bavrin, “Operatory dlya garmonicheskih funkcij i ih prilozheniya”, Differencial'nye uravneniya, 21:1 (1985), 9–15 | MR | Zbl

[3] V.V. Karachik, “A problem for the polyharmonic equation in the sphere”, Siberian Mathematical Journal, 32:5 (1991), 767–774 | DOI | MR | Zbl

[4] B.D. Koshanov, A.P. Soldatov, “Boundary value problem with normal derivatives for a higher-order elliptic equation on the plane”, Differential Equations, 52:12 (2016), 1594–1609 | DOI | MR | Zbl

[5] R. Dalmasso, “On the mean-value property of polyharmonic functions”, Studia Sci. Math. Hungar., 47:1 (2010), 113–117 | MR | Zbl

[6] V.V. Karachik, “On the mean-value property for polyharmonic functions”, Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 6:3 (2013), 59–66 | Zbl

[7] K.O. Besov, “On the boundary behavior of components of polyharmonic functions”, Math. Notes, 64:4 (1998), 450–460 | DOI | MR | Zbl

[8] V.V. Karachik, “On some special polynomials and functions”, Siberian Electronic Mathematical Reports, 10 (2013), 205–226 | MR | Zbl

[9] V.V. Karachik, “Construction of polynomial solutions to some boundary value problems for Poisson's equation”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1567–1587 | DOI | MR

[10] V.V. Karachik, “On some special polynomials”, Proceedings of the American Mathematical Society, 132:4 (2004), 1049–1058 | DOI | MR | Zbl

[11] V.V. Karachik, “$P$-Latin matrices and Pascal's triangle modulo a prime”, Fibonacci Quarterly, 34:4 (1996), 362–372 | MR | Zbl

[12] V.V. Karachik, “Solvability conditions for the Neumann problem for the homogeneous polyharmonic equation”, Differential Equations, 50:11 (2014), 1449–1456 | DOI | MR | Zbl

[13] V.V. Karachik, “On the arithmetic triangle arising from the solvability conditions for the Neumann problem”, Mathematical Notes, 96:1–2 (2014), 217–227 | DOI | MR | Zbl

[14] A.V. Bizadze, “O nekotoryh svojstvah poligarmonicheskih funkcij”, Differencial'nye uravneniya, 24:5 (1988), 825–831 | MR

[15] V.V. Karachik, “On solvability conditions for the Neumann problem for a polyharmonic equation in the unit ball”, Journal of Applied and Industrial Mathematics, 8:1 (2014), 63–75 | DOI | MR

[16] F. Gazzola, G. Sweers, H.-Ch. Grunau, Polyharmonic boundary value problems, Lecture Notes Math., 1991, Springer, 2010 | DOI | MR | Zbl

[17] G.C. Verchota, “The biharmonic Neumann problem in Lipschitz domains”, Acta Math., 194 (2005), 217–279 | DOI | MR | Zbl

[18] V.V. Karachik, “Construction of polynomial solutions to the Dirichlet problem for the polyharmonic equation in a ball”, Computational Mathematics and Mathematical Physics, 54:7 (2014), 1122–1143 | DOI | MR | Zbl

[19] B. Turmetov, R. Ashurov, “On Solvability of the Neumann Boundary Value Problem for Non-homogeneous Biharmonic Equation”, British Journal of Mathematics $\$ Computer Science, 4:4 (2014), 557–571 | DOI

[20] V.V. Karachik, “A Neumann-type problem for the biharmonic equation”, Siberian Advances in Mathematics, 27:2 (2017), 103–118 | DOI | MR