Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a112, author = {A. P. Kopylov}, title = {On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {59--72}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a112/} }
TY - JOUR AU - A. P. Kopylov TI - On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 59 EP - 72 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a112/ LA - en ID - SEMR_2017_14_a112 ER -
%0 Journal Article %A A. P. Kopylov %T On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 59-72 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a112/ %G en %F SEMR_2017_14_a112
A. P. Kopylov. On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 59-72. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a112/
[1] A. P. Kopylov, “On the unique determination of domains in Euclidean spaces”, J. Math. Sciences, 153:6 (2008), 869–898 | DOI | MR | Zbl
[2] M. V. Korobkov, “Necessary and sufficient conditions for the unique determination of plane domains”, Dokl. Math., 76 (2007), 722–723 | DOI | MR | Zbl
[3] M. V. Korobkov, “Necessary and sufficient conditions for unique determination of plane domains”, Siberian Math. J., 49:3 (2008), 436–451 | DOI | MR | Zbl
[4] M. V. Korobkov, “A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains”, Siberian Adv. Math., 20:4 (2010), 256–284 | DOI | MR
[5] M. K. Borovikova, “On isometry of polygonal domains with boundaries locally isometric in relative metrics”, Siberian Math. J., 33:4 (1993), 571–580 | DOI | MR
[6] F. Leja, W. Wilkosz, “Sur une propriété des domaines concaves”, Ann. Soc. Polon. Math., 2 (1924), 222–224 | Zbl
[7] Yu. D. Burago, V. A. Zalgaller, “Sufficient conditions for convexity”, Problems of Global Geometry, Zap. Nauchn. Sem. LOMI, 45, Nauka, L., 1974, 3–53 | MR
[8] A. P. Kopylov, M. V. Korobkov, “Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold”, J. Siberian Federal University. Mathematics Physics, 9:3 (2016), 320–331 | DOI
[9] D. A. Slutskiy, “On two problems in the theory of unique determination of domains”, Vestnik, Quart. J. of Novosibirsk State Univ., Series: Math., Mech. and Informatics, 11:2 (2011), 93–104
[10] A. P. Kopylov, “Unique determination of domains by the condition of local isometry of boundaries in the relative metrics”, Dokl. Math., 78:2 (2008), 746–747 | DOI | MR | Zbl