Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a109, author = {A. I. Zadorin}, title = {Cubature formulas for two-variable functions with large gradients in the boundary layers}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {927--936}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a109/} }
TY - JOUR AU - A. I. Zadorin TI - Cubature formulas for two-variable functions with large gradients in the boundary layers JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 927 EP - 936 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a109/ LA - ru ID - SEMR_2017_14_a109 ER -
A. I. Zadorin. Cubature formulas for two-variable functions with large gradients in the boundary layers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 927-936. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a109/
[1] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobel'kov, Numerical Methods, Nauka, M., 1987 (in Russian) | MR | Zbl
[2] A. I. Zadorin, N. A. Zadorin, “Quadrature formulas for functions with a boundary-layer component”, Computational Mathematics and Mathematical Physics, 51:11 (2011), 1837–1846 | DOI | MR | Zbl
[3] G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992 (in Russian) | MR
[4] J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific, Singapore, 2012 | MR | Zbl
[5] A. I. Zadorin, N. A. Zadorin, “An Analogue of the Four-Point Newton-Cotes Formula for a Function with a boundary-Layer Component”, Numerical Analysis and Applications, 6:4 (2013), 268–278 | DOI | MR | Zbl
[6] A. Zadorin, N. Zadorin, “Quadrature Formula with Five Nodes for Functions with a Boundary Layer Component”, Lecture Notes in Computer Science, 8236, Springer, Berlin, 2013, 540–546 | DOI | MR | Zbl
[7] A. I. Zadorin, “Cubature Formulas for a Two-Variable Function with Boundary-Layer Components”, Computational Mathematics and Mathematical Physics, 53:12 (2013), 1808–1818 | DOI | MR | Zbl
[8] H. G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[9] A. I. Zadorin, “Interpolation of a Function of Two Variables with Large Gradients in Boundary Layers”, Lobachevskii Journal of Mathematics, 37:3 (2016), 349–359 | DOI | MR
[10] A. I. Zadorin, N. A. Zadorin, “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Siberian Electronic Mathematical Reports, 9 (2012), 445–455 | MR | Zbl
[11] A. I. Zadorin, “Interpolation Formulas for Functions with Large Gradients in the Boundary Layer and their Application”, Modeling and Analysis of Information Systems, 23:3 (2016), 377–384 | DOI | MR