Cubature formulas for two-variable functions with large gradients in the boundary layers
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 927-936.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are constructed and investigated the cubature formulas in the rectangular domain to compute the integral from a function of two variables with large gradients in boundary layers. It is assumed that the function have two components with large gradients which are known up to the multiplier. This components responsible for growth of function in boundary layers. Research is relevant, because the application of cubature formulas based on Lagrangian interpolation in the presence of large gradients leads to significant errors. Cubature formula with a given number of nodes in each direction is constructed. Formula is exact for selected components. It is proved that the error estimates of constructed formulas don't depend on large gradients of function in boundary layers.
Keywords: two-variable function, boundary layer, double integral, error estimate.
Mots-clés : nonpolynomial interpolation, cubature rule
@article{SEMR_2017_14_a109,
     author = {A. I. Zadorin},
     title = {Cubature formulas for two-variable functions with large gradients in the boundary layers},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {927--936},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a109/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Cubature formulas for two-variable functions with large gradients in the boundary layers
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 927
EP  - 936
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a109/
LA  - ru
ID  - SEMR_2017_14_a109
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Cubature formulas for two-variable functions with large gradients in the boundary layers
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 927-936
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a109/
%G ru
%F SEMR_2017_14_a109
A. I. Zadorin. Cubature formulas for two-variable functions with large gradients in the boundary layers. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 927-936. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a109/

[1] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobel'kov, Numerical Methods, Nauka, M., 1987 (in Russian) | MR | Zbl

[2] A. I. Zadorin, N. A. Zadorin, “Quadrature formulas for functions with a boundary-layer component”, Computational Mathematics and Mathematical Physics, 51:11 (2011), 1837–1846 | DOI | MR | Zbl

[3] G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992 (in Russian) | MR

[4] J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific, Singapore, 2012 | MR | Zbl

[5] A. I. Zadorin, N. A. Zadorin, “An Analogue of the Four-Point Newton-Cotes Formula for a Function with a boundary-Layer Component”, Numerical Analysis and Applications, 6:4 (2013), 268–278 | DOI | MR | Zbl

[6] A. Zadorin, N. Zadorin, “Quadrature Formula with Five Nodes for Functions with a Boundary Layer Component”, Lecture Notes in Computer Science, 8236, Springer, Berlin, 2013, 540–546 | DOI | MR | Zbl

[7] A. I. Zadorin, “Cubature Formulas for a Two-Variable Function with Boundary-Layer Components”, Computational Mathematics and Mathematical Physics, 53:12 (2013), 1808–1818 | DOI | MR | Zbl

[8] H. G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl

[9] A. I. Zadorin, “Interpolation of a Function of Two Variables with Large Gradients in Boundary Layers”, Lobachevskii Journal of Mathematics, 37:3 (2016), 349–359 | DOI | MR

[10] A. I. Zadorin, N. A. Zadorin, “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Siberian Electronic Mathematical Reports, 9 (2012), 445–455 | MR | Zbl

[11] A. I. Zadorin, “Interpolation Formulas for Functions with Large Gradients in the Boundary Layer and their Application”, Modeling and Analysis of Information Systems, 23:3 (2016), 377–384 | DOI | MR