Method of singular value decomposition at the problem of determining the chemical composition of a medium
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 821-837.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding the chemical composition of a homogeneous medium by the method of multi-energy radiography is considered. The main attention is paid to the choice of optimal energy values of X-ray radiation and to derivation of accurate estimates of the perturbation of the solution of the system of equations for given perturbations of the right-hand side. For this purpose the method of Singular Value Decomposition of the matrix was used. Singular numbers and singular vectors corresponding to a number of groups of chemical elements, often encountered in practice, are calculated. Optimum values of X-ray radiation energy for these groups of elements are found. The results obtained has been compared with the case of overdetermined system solution. Several examples of the solution of the problem for media of different chemical composition have been constructed.
Keywords: radiation transfer equation, radiography of a continuous medium, finding the chemical composition of the medium
Mots-clés : singular value decomposition.
@article{SEMR_2017_14_a107,
     author = {V. G. Nazarov},
     title = {Method of singular value decomposition at the problem of determining the chemical composition of a medium},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {821--837},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a107/}
}
TY  - JOUR
AU  - V. G. Nazarov
TI  - Method of singular value decomposition at the problem of determining the chemical composition of a medium
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 821
EP  - 837
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a107/
LA  - ru
ID  - SEMR_2017_14_a107
ER  - 
%0 Journal Article
%A V. G. Nazarov
%T Method of singular value decomposition at the problem of determining the chemical composition of a medium
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 821-837
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a107/
%G ru
%F SEMR_2017_14_a107
V. G. Nazarov. Method of singular value decomposition at the problem of determining the chemical composition of a medium. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 821-837. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a107/

[1] D.S. Anikonov, A.E. Kovtanyuk, I.V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht–Boston, 2002 | MR | Zbl

[2] D.S. Anikonov, V.G. Nazarov, I. V. Prokhorov, Poorly Visible Media in X-ray Tomography, VSP, Utrecht–Boston, 2002 | Zbl

[3] S.V. Naidenov, V.D. Ryzhykov, “Ob opredelenii khimicheskogo sostava metodom multienergeticheskoi radiografii”, Pisma v ZHTF, 9 (2002), 6–13

[4] S.P. Osipov, A.K. Temnik, S.V. Chakhlov, “Vliianie fizicheskikh faktorov na kachestvo identifikatsii veshchestv obiektov kontrolia vysokoenergeticheskim metodom dualnykh energii”, Defektoskopiia, 8 (2014), 69–77

[5] V.M. Fedoseev, Rentgenovskiy sposob obnaruzheniia veshchestva po znacheniiu ego effectivnogo atomnogo nomera, Patent RF No2095795, Bull. No16, 2002.06.10, 1997

[6] V.G. Nazarov, “X-Ray Tomographyc Determination of the Chemical Composition and Structure of an Inhomogeneous Medium”, Computational Mathematics and Mathematical Physics, 8 (2007), 1358–1367 | DOI | MR

[7] A.E. Kovtanjuk, V.G. Nazarov, I.V. Prokhorov, I.P. Jarovenko, Method to identify materials by radiographyc re-irradiation, Patent RF No2426102. Date of publ. 10.08.2011, Bull. No22

[8] V.G. Nazarov, “Determining the Chemical Composition of an Inhomogeneous Body by Multi-Energy Radiography”, Journal of Applied and Industrial Mathematics, 5:2 (2011), 1–12 | DOI

[9] J.H. Hubbell, S.M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, Preprint NISTIR-5632, Nat. Inst. of Standard and Technology, Gaithersburg, 1995

[10] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, NIST Standard Reference Database 8 (XGAM), http://physics.nist.gov/PhysRefData/Elements/index.html

[11] P. Lancaster, Theory of matrices, Academic Press, New York–London, 1969 | MR | Zbl

[12] S.K. Godunov, A.G. Antonov, O.P. Kiriliuk, V.I. Kostin, Garantirovannaya tochnost' resheniya system lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1988 | MR

[13] F.R. Gantmakher, Teoriia matrits, Nauka, M., 1988 | MR

[14] Computing Center, M.V. Lomonosov Moscow State University http://num-anal.srcc.msu.ru/

[15] I.L. Knuniants (Chief Editor) et. al., Khimicheskaia entsiklopediia, In 5 vol., Sovetskaia entsiklopediia, M., 1988

[16] A.I. Volkov, I.M. Zharskii, Bolshoy khimicheskii spravochnik, Sovremennaia shkola, Minsk, 2005