Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a106, author = {O. V. Germider and V. N. Popov}, title = {Mathematical modeling rarefied gas flow in a rectangular channel with an inner cylindrical element}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {518--527}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a106/} }
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - Mathematical modeling rarefied gas flow in a rectangular channel with an inner cylindrical element JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 518 EP - 527 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a106/ LA - ru ID - SEMR_2017_14_a106 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %T Mathematical modeling rarefied gas flow in a rectangular channel with an inner cylindrical element %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 518-527 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a106/ %G ru %F SEMR_2017_14_a106
O. V. Germider; V. N. Popov. Mathematical modeling rarefied gas flow in a rectangular channel with an inner cylindrical element. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 518-527. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a106/
[1] J. Kim, A. J. H. Frijns, S. V. Nedea, A. A. A. Steenhoven, “Geometry effects on rarefied nanochannel flows”, Microfluid Nanofluid, 15 (2013), 661–673 | DOI
[2] V. A. Titarev, E. M. Shakhov, “Nonisothermal gas flow in a long channel analyzed on the basis of the kinetic S-Model”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 2131–2144 | DOI | MR | Zbl
[3] O. V. Germider, V. N. Popov, “Mathematical modeling of heat transfer process in a rectangular channel in the problem of Poiseuille flow”, Siberian Electronic Mathematical Reports, 13 (2016), 1401–1409 | MR
[4] I. Graur, M. T. Ho, “Rarefied gas flow through a long rectangular channel of variable cross section”, Vacuum, 101 (2014), 328–332 | DOI
[5] F. M. Sharipov, “Rarefied gas flow through a long rectangular channel”, J. Vac. Sci. Technol. A, 17:5 (1999), 3062–3066 | DOI
[6] S. Pantazis, S. Varoutis, V. Hauer, C. Day, D. Valougeorgis, “Gas-surface scattering effect on vacuum gas flows through rectangular channels”, Vacuum, 85 (2011), 1161–1164 | DOI
[7] V. A. Titarev, E. M. Shakhov, “Kinetic analysis of the isothermal flow in a long rectangular microchannel”, Computational Mathematics and Mathematical Physics, 50:7 (2010), 1221–1237 | DOI | MR | Zbl
[8] S. Boutebba, W. Kaabar, “Slip flow and heat transfer through a rarefied nitrogen gas between two coaxial cylinders”, J. Chem. Pharm. Res., 8:8 (2016), 495–501
[9] O. V. Germider, V. N. Popov, “Mathematical modelling of the mass transfer process between two coaxial cylinders in the problem of thermal creep”, IOP Conf. Series: Materials Science and Engineering, 158 (2016), 1–7
[10] P. Taheri, H. Struchtrup, “Poiseuille flow of moderately rarefied gases in annular channels”, International Journal of Heat and Mass Transfer, 55 (2012), 1291–1303 | DOI | MR | Zbl
[11] I. Graur, F. Sharipov, “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, European Journal of Mechanics V Fluids, 27 (2008), 335–345 | DOI | MR | Zbl
[12] I. Graur, F. Sharipov, “Non-isothermal flow of rarefied gas through a long pipe with elliptic cross section”, Microfluid Nanofluid, 6 (2009), 267–275 | DOI
[13] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Heat transfer process in an elliptic channel”, Matem. Mod., 29:1 (2017), 84–94
[14] V. A. Rykov, V. A. Titarev, E. M. Shakhov, “Rarefied poiseuille flow in elliptical and rectangular tubes”, Fluid Dyn., 46:3 (2011), 456–466 | DOI | MR | Zbl
[15] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Computation of the heat flux in a cylindrical duct within the framework of the kinetic approach”, J. Eng. Phys. Thermophy, 89:5 (2016), 1338–1343 | DOI
[16] C. E. Siewert, D. Valougeorgis, “An analytical discrete-ordinates solution of the S-model kinetic equations for flow in a cylindrical tube”, J. Quant. Spectrosc. Radiat. Transf., 72 (2002), 531–550 | DOI
[17] C. H. Kamphorst, P. Rodrigues, L. B. Barichello, “A Closed-Form Solution of a Kinetic Integral Equation for Rarefied Gas Flow in a Cylindrical Duct”, Applied Mathematics, 5 (2014), 1516–1527 | DOI
[18] A. V. Proskurin, A. M. Sagalakov, “Modeling Duct Flow by the R-Function Method”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 429–434 | DOI | MR | Zbl
[19] M. N. Kogan, Rarefied gas dynamics. Kinetic theory, Nauka, M., 1967
[20] F. M. Sharipov, V. D. Seleznev, Motion of rarefied gases in channels and microchannels, UrO RAN, Yekaterinburg, 2008
[21] P. Courant, Partial Differential Equations, Mir, M., 1964 | MR | Zbl
[22] J. Bernsten, T. O. Espelid, A. Genz, “Algorithm 698: DCUHRE: an adaptive multidemensional integration routine for a vector of integrals”, ACM Transactions on Mathematical Software (TOMS), 17 (1991), 452–456 | DOI | MR