Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a105, author = {A. E. Novikov and E. A. Novikov and M. V. Rybkov}, title = {An algorithm of variable structure based on three-stage explicit-implicit methods}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {433--442}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a105/} }
TY - JOUR AU - A. E. Novikov AU - E. A. Novikov AU - M. V. Rybkov TI - An algorithm of variable structure based on three-stage explicit-implicit methods JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 433 EP - 442 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a105/ LA - en ID - SEMR_2017_14_a105 ER -
%0 Journal Article %A A. E. Novikov %A E. A. Novikov %A M. V. Rybkov %T An algorithm of variable structure based on three-stage explicit-implicit methods %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 433-442 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a105/ %G en %F SEMR_2017_14_a105
A. E. Novikov; E. A. Novikov; M. V. Rybkov. An algorithm of variable structure based on three-stage explicit-implicit methods. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 433-442. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a105/
[1] E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations I. Nonstiff Problems, Springer-Verlag, Berlin, 1987 | MR | Zbl
[2] E. Hairer, G. Wanner, Solving ordinary differential equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991 | MR | Zbl
[3] E. A. Novikov, Explicit methods for stiff systems, Nauka, Novosibirsk, 1997 (in russian) | MR | Zbl
[4] E. A. Novikov, Yu. V. Shornikov, Computer modelling stiff hybrid systems, NSTU press, Novosibirsk, 2013 (in russian)
[5] H. H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations”, Computer, 5 (1963), 329–330 | MR | Zbl
[6] V. A. Novikov, E. A. Novikov, L. A. Yumatova, “Freezing the Jacobi matrix in the second order Rosenbrock type method”, Computational Mathematics and Mathematical Physics, 27:3 (1987), 385–390 (in russian) | MR
[7] E. A. Novikov, A. L. Dvinskiy, “Freezing Jacobi Matrix in Rosenbrock-Type Methods”, Computational technologies, 10 (2005), 109–115 (in russian) | Zbl
[8] E. A. Novikov, “Developing the integration algorithm for stiff systems of differential equations on the base of variable structure scheme”, Proceedings of Academy of Sciences of USSR, 278:2 (1984), 272–275 (in russian) | MR | Zbl
[9] A. E. Novikov, E. A. Novikov, “Numerical integration of stiff systems with low accuracy”, Mathematical Models and Computer Simulations, 2:4 (2010), 443–452 (in russian) | MR | Zbl
[10] E. A. Novikov, “An algorithm of alternating order, step, and variable structure for solving stiff problems”, Izvestiya of Saratov University. New series. Series Mathematics. Mechanics. Informatics, 13:3 (2013), 34–41 (in russian) | Zbl
[11] V. A. Novikov, E. A. Novikov, “Stability control of explicit one-step methods for integration of ODEs”, Proceedings of Academy of Sciences of USSR, 277:5 (1984), 1058–1062 (in russian) | MR | Zbl
[12] E. A. Novikov, “An algorithm of alternating order and step based on the explicit three-stage method of the Runge–Kutta type”, Izvestiya of Saratov University. New series. Series Mathematics. Mechanics. Informatics, 11:3/1 (2011), 46–53 (in russian)
[13] G. Dahlquist, “A special stability problem for linear multistep methods”, BIT, 3 (1963), 23–43 | MR
[14] G. V. Demidov, L. A. Yumatova, Study of accuracy of implicit one-step methods, The preprint of the Computer Centre of the USSR AS Siberian branch, No 25, 1976 (in russian)
[15] E. A. Novikov, “Applying the third order Rosenbrock type methods to solving the Ring modulator”, Control systems and Information technologies, 2015, no. 2(60), 20–23 (in russian)
[16] E. A. Novikov, “(2,1)-Method for solving stiff nonautonomous problems”, Automation and Remote Control, 73:1 (2012), 191–197 | MR | Zbl
[17] W. H. Enright, T. E. Hull, Lindberg B., “Comparing numerical methods for stiff systems of O.D.E:s”, BIT, 15 (1975), 10–48 | Zbl
[18] F. Mazzia, C. Magherini, Test Set for Initial Value Problem Solvers, Report Department of Mathematics, University of Bari, Italy, No 4:2008, 2008