Numerical solution of the inverse Cauchy problem for the elliptic equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 308-316

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is interested at the Cauchy problem for Laplace's equation, which is to recover Dirichlet condition on the accessible part of the domain from additional conditions on the other part of domain. To solve this kind of ill-posed problem, we use a variational iterative method. Also, a direct method for numerical solution of the inverse boundary value problem is presented.
Keywords: inverse problem, ill-posed problem, iterative method, direct method, difference scheme.
Mots-clés : Laplace equation
@article{SEMR_2017_14_a104,
     author = {G. A. Prokopev and V. I. Vasil'ev and A. M. Kardashevsky and P. V. Sivsev},
     title = {Numerical solution of the inverse {Cauchy} problem for the elliptic equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {308--316},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/}
}
TY  - JOUR
AU  - G. A. Prokopev
AU  - V. I. Vasil'ev
AU  - A. M. Kardashevsky
AU  - P. V. Sivsev
TI  - Numerical solution of the inverse Cauchy problem for the elliptic equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 308
EP  - 316
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/
LA  - ru
ID  - SEMR_2017_14_a104
ER  - 
%0 Journal Article
%A G. A. Prokopev
%A V. I. Vasil'ev
%A A. M. Kardashevsky
%A P. V. Sivsev
%T Numerical solution of the inverse Cauchy problem for the elliptic equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 308-316
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/
%G ru
%F SEMR_2017_14_a104
G. A. Prokopev; V. I. Vasil'ev; A. M. Kardashevsky; P. V. Sivsev. Numerical solution of the inverse Cauchy problem for the elliptic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 308-316. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/