Numerical solution of the inverse Cauchy problem for the elliptic equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 308-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is interested at the Cauchy problem for Laplace's equation, which is to recover Dirichlet condition on the accessible part of the domain from additional conditions on the other part of domain. To solve this kind of ill-posed problem, we use a variational iterative method. Also, a direct method for numerical solution of the inverse boundary value problem is presented.
Keywords: inverse problem, ill-posed problem, iterative method, direct method, difference scheme.
Mots-clés : Laplace equation
@article{SEMR_2017_14_a104,
     author = {G. A. Prokopev and V. I. Vasil'ev and A. M. Kardashevsky and P. V. Sivsev},
     title = {Numerical solution of the inverse {Cauchy} problem for the elliptic equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {308--316},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/}
}
TY  - JOUR
AU  - G. A. Prokopev
AU  - V. I. Vasil'ev
AU  - A. M. Kardashevsky
AU  - P. V. Sivsev
TI  - Numerical solution of the inverse Cauchy problem for the elliptic equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 308
EP  - 316
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/
LA  - ru
ID  - SEMR_2017_14_a104
ER  - 
%0 Journal Article
%A G. A. Prokopev
%A V. I. Vasil'ev
%A A. M. Kardashevsky
%A P. V. Sivsev
%T Numerical solution of the inverse Cauchy problem for the elliptic equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 308-316
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/
%G ru
%F SEMR_2017_14_a104
G. A. Prokopev; V. I. Vasil'ev; A. M. Kardashevsky; P. V. Sivsev. Numerical solution of the inverse Cauchy problem for the elliptic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 308-316. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/

[1] M. M. Lavrent'ev, “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR | Zbl

[2] S. I. Kabanikhin, A. L. Karchevsky, “Optimizational method for solving the Cauchy problem for an elliptic equation”, Journal of Inverse and Ill-Posed Problems, 3:1 (1995), 21–46 | DOI | MR | Zbl

[3] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009

[4] A. A. Samarskiy, P. N. Vabishchevich, Chislennye metody resheniya obratnyh zadach matematicheskoy fiziki, Izdatelstvo LKI, M., 2009

[5] A. A. Samarskiy, A. B. Gylin, Chislennye metody, Nayka, M., 1989 | MR

[6] A. A. Samarskiy, E. S. Nikolaev, Metody resheniya setochnyh uravneniy, Nayka, M., 1978 | MR

[7] Henk A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, USA, 2003 | MR | Zbl

[8] J. Hadamard, Lecture on the Cauchy problem in linear partial differential equations, Oxford University Press, London, 1923 | MR | Zbl

[9] S. I. Kabanikhin, “Definitions and examples of inverse and ill-posed problems”, Journal of Inverse and Ill-Posed Problems, 16 (2008), 317–357 | MR | Zbl

[10] O. A. Liskovec, “Teoriya i metody resheniya nekorrektnyh zadach”, Itogi nauki i tekhniki. Matematicheskiy analiz, 20, VINITI, 1982, 116–178

[11] Chein-Shan Liu, Satya N. Atluri, “Numerical solution of the Laplacian Cauchy problem by using a better post conditioning collocation Trefftz method”, Engineering Analysis with Boundary Elements, 37:1 (2013), 74–83 | DOI | MR | Zbl

[12] V. A. Kozlov, V. G. Mazya, A. V. Fomin, “Ob odnom iteracionnom metode resheniya zadachi Koshi dlya ellipticheskih uravneniy”, Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 31:1 (1991), 64–74 | MR

[13] C. Tajani, J. Abouchabaka, “Missing boundary data reconstruction by an alternating iterative method”, International Journal of Advances in Engineering Technology, 2:1 (2012), 578–586

[14] C. Tajani, J. Abouchabaka, O. Abdoun, “Data recovering problem using a new KMF algorithm for annular domain”, American Journal of Computational Mathematics, 2:2 (2012), 88–94 | DOI

[15] C. Tajani, J. Abouchabaka, “An Alternating KMF Algorithm to Solve the Cauchy Problem for Laplace's Equation”, International Journal of Computer Applications, 38:8 (2012), 30–36 | DOI

[16] F. Delvare, A. Cimeti`ere, J.-L. Hanus, P. Bailly, “An iterative method for the Cauchy problem in linear elasticity with fading regularization effect”, Computer Methods in Applied Mechanics and Engineering, 199:49–52 (2010), 3336–3344 | DOI | MR | Zbl

[17] L. Marin, “Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems”, Engineering Analysis with Boundary Elements, 35:3 (2011), 415–429 | DOI | MR | Zbl

[18] Samarskii A. A., Vabishchevich P. N., Vasil'ev V. I., “Iterative Solution of a Retrospective Inverse Problem of Heat Conduction”, Matematicheskoe Modelirovanie, 9:5 (1997), 119–127 | MR | Zbl

[19] V. I. Vasil'ev, A. M. Kardashevsky, P. V. Sivtsev, “Computational experiment on the numerical solution of some inverse problems of mathematical physics”, IOP Publishing IOP Conf. Series: Materials Science and Engineering, 158 (2016), 012093 | DOI

[20] S. I. Kabanikhin, M. A. Shishlenin, D. B. Nurseitov, A. T. Nurseitova, S. E. Kasenov, “Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation”, Journal of Applied Mathematics, 2014, 786326 | MR