Numerical solution of the inverse Cauchy problem for the elliptic equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 308-316
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is interested at the Cauchy problem for Laplace's equation, which is to recover Dirichlet condition on the accessible part of the domain from additional conditions on the other part of domain. To solve this kind of ill-posed problem, we use a variational iterative method. Also, a direct method for numerical solution of the inverse boundary value problem is presented.
Keywords:
inverse problem, ill-posed problem, iterative method, direct method, difference scheme.
Mots-clés : Laplace equation
Mots-clés : Laplace equation
@article{SEMR_2017_14_a104,
author = {G. A. Prokopev and V. I. Vasil'ev and A. M. Kardashevsky and P. V. Sivsev},
title = {Numerical solution of the inverse {Cauchy} problem for the elliptic equation},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {308--316},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/}
}
TY - JOUR AU - G. A. Prokopev AU - V. I. Vasil'ev AU - A. M. Kardashevsky AU - P. V. Sivsev TI - Numerical solution of the inverse Cauchy problem for the elliptic equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 308 EP - 316 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/ LA - ru ID - SEMR_2017_14_a104 ER -
%0 Journal Article %A G. A. Prokopev %A V. I. Vasil'ev %A A. M. Kardashevsky %A P. V. Sivsev %T Numerical solution of the inverse Cauchy problem for the elliptic equation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 308-316 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/ %G ru %F SEMR_2017_14_a104
G. A. Prokopev; V. I. Vasil'ev; A. M. Kardashevsky; P. V. Sivsev. Numerical solution of the inverse Cauchy problem for the elliptic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 308-316. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/