Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a104, author = {G. A. Prokopev and V. I. Vasil'ev and A. M. Kardashevsky and P. V. Sivsev}, title = {Numerical solution of the inverse {Cauchy} problem for the elliptic equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {308--316}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/} }
TY - JOUR AU - G. A. Prokopev AU - V. I. Vasil'ev AU - A. M. Kardashevsky AU - P. V. Sivsev TI - Numerical solution of the inverse Cauchy problem for the elliptic equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 308 EP - 316 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/ LA - ru ID - SEMR_2017_14_a104 ER -
%0 Journal Article %A G. A. Prokopev %A V. I. Vasil'ev %A A. M. Kardashevsky %A P. V. Sivsev %T Numerical solution of the inverse Cauchy problem for the elliptic equation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 308-316 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/ %G ru %F SEMR_2017_14_a104
G. A. Prokopev; V. I. Vasil'ev; A. M. Kardashevsky; P. V. Sivsev. Numerical solution of the inverse Cauchy problem for the elliptic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 308-316. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a104/
[1] M. M. Lavrent'ev, “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR | Zbl
[2] S. I. Kabanikhin, A. L. Karchevsky, “Optimizational method for solving the Cauchy problem for an elliptic equation”, Journal of Inverse and Ill-Posed Problems, 3:1 (1995), 21–46 | DOI | MR | Zbl
[3] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009
[4] A. A. Samarskiy, P. N. Vabishchevich, Chislennye metody resheniya obratnyh zadach matematicheskoy fiziki, Izdatelstvo LKI, M., 2009
[5] A. A. Samarskiy, A. B. Gylin, Chislennye metody, Nayka, M., 1989 | MR
[6] A. A. Samarskiy, E. S. Nikolaev, Metody resheniya setochnyh uravneniy, Nayka, M., 1978 | MR
[7] Henk A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, USA, 2003 | MR | Zbl
[8] J. Hadamard, Lecture on the Cauchy problem in linear partial differential equations, Oxford University Press, London, 1923 | MR | Zbl
[9] S. I. Kabanikhin, “Definitions and examples of inverse and ill-posed problems”, Journal of Inverse and Ill-Posed Problems, 16 (2008), 317–357 | MR | Zbl
[10] O. A. Liskovec, “Teoriya i metody resheniya nekorrektnyh zadach”, Itogi nauki i tekhniki. Matematicheskiy analiz, 20, VINITI, 1982, 116–178
[11] Chein-Shan Liu, Satya N. Atluri, “Numerical solution of the Laplacian Cauchy problem by using a better post conditioning collocation Trefftz method”, Engineering Analysis with Boundary Elements, 37:1 (2013), 74–83 | DOI | MR | Zbl
[12] V. A. Kozlov, V. G. Mazya, A. V. Fomin, “Ob odnom iteracionnom metode resheniya zadachi Koshi dlya ellipticheskih uravneniy”, Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 31:1 (1991), 64–74 | MR
[13] C. Tajani, J. Abouchabaka, “Missing boundary data reconstruction by an alternating iterative method”, International Journal of Advances in Engineering Technology, 2:1 (2012), 578–586
[14] C. Tajani, J. Abouchabaka, O. Abdoun, “Data recovering problem using a new KMF algorithm for annular domain”, American Journal of Computational Mathematics, 2:2 (2012), 88–94 | DOI
[15] C. Tajani, J. Abouchabaka, “An Alternating KMF Algorithm to Solve the Cauchy Problem for Laplace's Equation”, International Journal of Computer Applications, 38:8 (2012), 30–36 | DOI
[16] F. Delvare, A. Cimeti`ere, J.-L. Hanus, P. Bailly, “An iterative method for the Cauchy problem in linear elasticity with fading regularization effect”, Computer Methods in Applied Mechanics and Engineering, 199:49–52 (2010), 3336–3344 | DOI | MR | Zbl
[17] L. Marin, “Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems”, Engineering Analysis with Boundary Elements, 35:3 (2011), 415–429 | DOI | MR | Zbl
[18] Samarskii A. A., Vabishchevich P. N., Vasil'ev V. I., “Iterative Solution of a Retrospective Inverse Problem of Heat Conduction”, Matematicheskoe Modelirovanie, 9:5 (1997), 119–127 | MR | Zbl
[19] V. I. Vasil'ev, A. M. Kardashevsky, P. V. Sivtsev, “Computational experiment on the numerical solution of some inverse problems of mathematical physics”, IOP Publishing IOP Conf. Series: Materials Science and Engineering, 158 (2016), 012093 | DOI
[20] S. I. Kabanikhin, M. A. Shishlenin, D. B. Nurseitov, A. T. Nurseitova, S. E. Kasenov, “Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation”, Journal of Applied Mathematics, 2014, 786326 | MR